Synthetic resins or natural rubbers -- part of the class 520 ser – Synthetic resins – Mixing of two or more solid polymers; mixing of solid...
Reexamination Certificate
2001-01-30
2004-08-24
Cheung, William (Department: 1713)
Synthetic resins or natural rubbers -- part of the class 520 ser
Synthetic resins
Mixing of two or more solid polymers; mixing of solid...
C525S197000, C525S199000, C525S221000, C525S222000, C525S212000, C525S287000
Reexamination Certificate
active
06780935
ABSTRACT:
BACKGROUND OF THE INVENTION
The present invention relates to polymeric resins and more specifically to polymeric resins containing ionic and/or ionizable groups which are useful in a variety of products such as polyelectrolyte membranes and other thermoplastic articles. The present invention further relates to methods of making these resins as well as using these resins.
Perfluorocarbon ionic exchange membranes provide high cation transport, and have been extensively used as ionic exchange membranes. Polymeric ion exchange membranes can be referred to as solid polymer electrolytes or polymer exchange membranes (PEM). The most commonly used membranes, and commercially available, are made from Nafion™ and Aciplex™ polymers. However, reports and literature describe these membranes as working well with gaseous fuels but not with liquid fuels which may be mainly due to fuel crossover that diminishes cell performance. A membrane's chemical resistance and mechanical strength are important properties for fuel cell applications. Indeed, the membrane is often subjected to high differential pressure as well as other conditions. Also, mechanical strength becomes important when the membrane is very thin such as less than 100 microns. Further, when used with fuels or battery applications, the membrane sits in a very acidic medium at temperatures that can reach 150° C. and in the presence of metal ions and solvents. This environment requires that the membrane be chemically resistant.
Currently, many fluorine-containing membranes can suffer from one or more of the following short comings:
i) high liquid crossover through the membrane;
ii) heterogeneous blending between the fluorinated polymer and other polymers that leads to inferior properties;
iii) insufficient chemical resistance in the presence of liquid fuels;
iv) the need for high sulfonation levels to function properly;
v) lack of heterogeneous distribution of sulfonated groups; and/or
vi) poor mechanical properties.
U.S. Pat. No. 4,295,952 to de Nora et al. relates to cationic membranes which have partly sulfonated tripolymers of styrene, divinylbenzene, and at least one of 2-vinylpyridine, 4-vinylpyridine, and/or acrylic acid.
U.S. Pat. No. 5,679,482 to Ehrenberg et al. relates to fuel cells incorporating an ion-conducting membrane having ionic groups. The polymer forming the membrane contains styrene which has been sulfonated using a sulfonation agent. The sulfonation can take place with the monomer or polymer.
U.S. Pat. No. 5,795,668 describes a fuel cell containing a battery with a reinforced polymeric ion exchange membrane (PEM) using Nafion™ type polymers. The PEM is based on a fluorinated porous support layer and a reinforced ion exchange membrane with an equivalent weight of about 500 to 2000 and a preferred ion exchange capacity of from 0.5 to 2 meq/g dry resin. The porous support layer is made of certain PTFE and PTFE copolymers. The membrane is a perfluorinated polymer with side chains containing—CF
2
CF
2
SO
2
F. It is known from the literature that Nafion® type polymers can have mechanical failure in methanol fuel cells as well as problems with liquid crossover.
WO 97/41168 to Rusch relates to a multi-layered ion-exchange composite membrane having ionic exchange resins, such as fluorinated or non-fluorinated polystyrene based sulfonates and sulfonated polytetrafluoroethylenes.
WO 98/20573 A1 describes a fuel cell containing a highly fluorinated lithium ion exchange polymer electrolyte membrane (PEM). The PEM is based on an ion exchange membrane which is imbibed with an aprotic solvent.
WO 98/22989 describes a polymeric membrane containing polystyrene sulfonic acid and poly(vinylidene fluoride), which provides reduced methanol crossover in direct methanol fuel cell (DMFC) use. However, the polymer blending process described does not provide an acceptable blend and the sulfonation steps are complicated.
Holmberg et al., (J. Material Chem. (1996 6(8), 1309) describes the preparation of proton conducting membranes by irradiation grafting of styrene onto PVDF films, followed by sulfonation with chlorosulfonic acid. In the present invention, a sulfonation step is not required since the sulfonated group can be incorporated using a sulfonated monomer.
Thus, there is a need to overcome one or more of these limits and to develop a membrane that can be used for applications in liquid fuel cells. More particularly, there is a need to develop a fluoropolymer which is more intimately mixed with other polymers as well as to make membranes directly from aqueous dispersions of fluoropolymers. Also, there is a need to provide compositions and methods of synthesis as well as methods of using water dispersions of fluoropolymers having sulfonated or other functionalities. Further, there is a need to provide a method that is easier and environmentally friendly. In addition, those skilled in the art would prefer a polyelectrolyte membrane having a higher chemical resistance and mechanical strength.
SUMMARY OF THE INVENTION
Accordingly, a feature of the present invention is to provide fluoropolymers, having ionic functionalities.
Another feature of the present invention is to provide a polyelectrolyte membrane having high chemical resistance and/or mechanical strength.
Another feature of the present invention is to provide polymers which can be formed as a component in polyelectrolyte membranes which avoid one or more of the short comings described above, such as avoiding a high liquid crossover through the membrane.
Another feature of the present invention is to provide membranes which can be made directly from an aqueous dispersion of a polymer.
Another feature of the present invention is to provide fluoropolymers having ionic or ionizable groups without separate sulfonation steps.
Additional features and advantages of the present invention will be set forth in part in the description which follows, and in part will be apparent from the description, or may be learned by practice of the present invention. The objectives and other advantages of the present invention will be realized and obtained by means of the elements in combination and particularly pointed out in the written description and appended claims.
To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described herein, the present invention relates to a polymer blend containing at least one acrylic resin and/or vinyl resin and at least one thermoplastic fluoropolymer, wherein the acrylic and/or vinyl resin has at least one ionic or ionizable group, such as a sulfonated group.
The present invention also relates to a composition that includes the polymer product of blending: a) at least one polymer having acrylic and/or vinyl units and at least one ionic or ionizable group; and b) at least one thermoplastic fluoropolymer, wherein a) and b) are different.
The present invention further relates to a composition comprising the polymer product of a) at least one polymerizable acrylic and/or vinyl containing monomer(s) and at least one monomer comprising at least one ionic or ionizable group, or both; b) in the presence of a dispersion of at least one fluoropolymer capable of dispersing in a medium.
Also, the present invention relates to a preferred method of making the above-described compositions, involving the steps: a) conducting a seed emulsion polymerization of at least one polymerizable acrylic and/or vinyl containing monomer and at least one monomer containing at least one ionic or ionizable group in a dispersion of at least one polymer capable of dispersing in a medium.
The present invention also relates to blending a) at least one polymer having acrylic and/or vinyl units and at least one ionic or ionizable group; and b) at least one thermoplastic fluoropolymer, wherein a) and b) are different.
The present invention further relates to a polymeric ion exchange membrane containing the compositions of the present invention and also relates to a fuel cell and battery containing the membrane of the present inve
Billon Laurent
Hedhli Lotfi
Atofina Chemicals, Inc.
Cheung William
Kilyk & Bowersox, P.L.LC.
LandOfFree
Fluoropolymer resins containing ionic or ionizable groups... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fluoropolymer resins containing ionic or ionizable groups..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluoropolymer resins containing ionic or ionizable groups... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3349589