Fluoropolymer fluid overfill probe

Radiant energy – Photocells; circuits and apparatus – Optical or pre-photocell system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C250S903000, C340S619000

Reexamination Certificate

active

06555837

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to fluid transfer control apparatus and, particularly, to the use of optically-based overfill probes for detecting when fluid being transferred into a container has reached a predetermined level.
BACKGROUND OF THE INVENTION
In the art of fluid transfer control, particularly as it applies to the petroleum industry, one of the more common control devices is an overfill sensor for determining when the fluid being transferred into a container, such as a petroleum tanker compartment, has reached a predetermined level. An output signal from such a probe indicates when the fluid has reached the predetermined level, and may be used as an indication by a fluid transfer controller to discontinue fluid flow into the container. In this way, overfilling of the container, which is particularly hazardous when dealing with flammable liquids such as gasoline, can be avoided.
One type of overfill probe which is particularly common in the petrochemical industry makes use of an optical signal which is coupled into a medium having a relatively high index of refraction, such as a glass or non-opaque plastic. This medium is specially-shaped and commonly referred to as a “prism.” The prism is shaped to cause internal reflection of the optical signal when surrounded by air. The shape of the prism and the direction at which the optical signal is coupled into the prism is such that the reflection of the optical signal within the prism redirects the signal toward a photodetector. This photodetector generates an output signal which indicates that the optical signal is being detected.
A schematic illustration of this prior art probe design is shown in FIG.
1
. In the plane of the optical signal path, the prism
10
has a triangular cross section. The optical signal is generated by light source
12
. When the prism
10
is surrounded by air, the optical signal (indicated by the arrows in
FIG. 1
) is reflected at two interfaces between the prism material and the surrounding air, and redirected toward photodetector
14
. The photodetector
14
generates an electrical output signal which indicates that the optical signal is being detected.
As shown in
FIG. 1
, the prior art prism
10
uses a forty-five degree incidence angle (relative to normal) for each of the reflections of the optical signal within the prism
10
. This prism
10
has the triangular cross section shown, and light source
12
and photodetector
14
are oriented in the same direction along the same surface of the prism
10
. When in use, the prism is part of a probe which is located within a fluid container, usually near the top of the container. When the fluid in the container rises high enough to contact a prism surface at a location where the optical signal is incident, the forty-five degree angle is no longer sufficient to provide internal reflection of the optical signal at that interface. This is because the prism/air interface becomes a prism/fluid interface, and the fluid has an index of refraction much closer to the prism material than does air. According to Snell's law of refraction, (well-known in the art of optical design) the forty-five degree angle of incidence of the optical signal now results in the transmission of the optical signal through the interface due to the similarity of the relative indices of refraction. As a result, the signal is no longer detected by photodetector
14
, and the corresponding change in the photodetector output signal is used to discontinue loading of the container.
One of the problems encountered with a prior art probe such as that shown in
FIG. 1
is related to the operational temperature range of the probe. When the probe is used in cold ambient temperatures (common for a petroleum tanker truck which has the probe within one of its tanker compartments and which delivers fuel in regions having relatively cold climates), is that condensation, or even frost, may form on the external surfaces of the prism. If sufficient condensation forms on the prism when the fluid level in the container is below that at which it should be detected by the probe, the condensation may nonetheless cause transmission of a significant portion of the optical signal through the surface of the prism. This portion of the signal then goes undetected by the photodetector. If the signal loss is high enough, the signal detected by the photodetector (and indicated by the photodetector output signal) may be below the detection threshold used to indicate when the fluid in the container has reached the probe level. As a result, a false overfill signal may result which prevents fluid from being loaded into the container, despite the fact that the container may be empty.
In the past, one of the solutions to the condensation problem has been to increase the sensitivity of the photodetector so that it is activated by smaller amounts of reflected light. However, this also makes the probe more sensitive to inadvertent reflections from surfaces within the container. When the prism is in contact with the fluid, the light from the light source can pass through the fluid, be reflected off a reflective surface within the container, and find its way back to the photodetector. If the reflected signal is strong enough, this can result in a dangerous overfill situation, as the contact of the prism by the fluid goes undetected, and the container continues to be filled to the point of overflowing.
SUMMARY OF THE INVENTION
The improved overfill probe of the present invention makes use of an optical signal in the infrared (IR) range, generated from an IR source, such as an diode having an output in the IR range. The optical signal is coupled into a first medium of fluoropolymer, in the preferred embodiment TEFLON Perfluoro Alkoxy (TEFLON PFA), although other fluoropolymers may also be used. TEFLON PFA is manufactured by, and TEFLON® is a registered trademark of, E. I. du Pont de Nemours & Co., Inc. The prism has a particular shape which results in the internal reflection of the IR signal when the reflecting surfaces are contacted by a second medium (e.g. air) having an index of refraction significantly lower than that of the prism material. The reflection of the optical signal is toward a photodetector of the probe, which detects the optical signal and generates an output signal in response thereto.
The probe is located in a fluid container, such as a compartment of a petroleum tanker truck, with the prism positioned such that it is contacted by fluid in the container when the fluid is at a predetermined fluid level. The optical signal from the IR source is coupled into the prism and, while the fluid level is below the predetermined level (i.e. while the probe is surrounded by the second medium), the optical signal is reflected by at least one interface between the prism and the second medium. The optical signal is ultimately directed toward the photodetector through internal reflection within the prism. As the container is filled with liquid, the fluid level rises toward the prism. When the fluid reaches the prism, the new optical interface formed by the prism and the fluid allows transmission of the optical signal through the interface. Without the reflection of the optical signal, the signal is no longer detected by the photodetector. As a result, the output signal of the photodetector changes, indicating that the optical signal is no longer detected, and the change can be used by a fluid transfer controller to discontinue fluid transfer into the container, thereby preventing overfilling.
In addition to the unique material of the probe prism of the present invention, the prism is also a unique shape. In particular, the prism has a cross-sectional shape which is preferably substantially a quadrilateral. This cross-sectional shape results in the light source and photodetector not being oriented in the same direction, but also provides a higher angle of incidence (relative to normal) of the optical signal on the internally reflective surfaces of the prism. There is therefore less chance of optical

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluoropolymer fluid overfill probe does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluoropolymer fluid overfill probe, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluoropolymer fluid overfill probe will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3030638

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.