Cleaning compositions for solid surfaces – auxiliary compositions – Cleaning compositions or processes of preparing – For cleaning a specific substrate or removing a specific...
Reexamination Certificate
2000-10-27
2002-12-10
Webb, Gregory E. (Department: 1751)
Cleaning compositions for solid surfaces, auxiliary compositions
Cleaning compositions or processes of preparing
For cleaning a specific substrate or removing a specific...
C510S176000, C134S002000, C134S003000, C252S079300, C252S079400, C438S718000
Reexamination Certificate
active
06492309
ABSTRACT:
FIELD OF INVENTION
This invention relates to homogeneous compositions containing a fluorinated solvent, hydrogen fluoride, and a co-solvent and the use of these compositions in cleaning and processing semiconductors and integrated circuits including silicon and Ga/As substrates.
BACKGROUND
The use of microelectronic devices, such as integrated circuits, flat panel displays and micro electromechanical systems, has burgeoned in new business and consumer electronic equipment, such as personal computers, cellular phones, electronic calendars, personal digital assistants, and medical electronics. Such devices have also become an integral part of more established consumer products such as televisions, stereo components and automobiles.
These devices in turn contain one or more very high quality semiconductor chips made from silicon wafers containing many layers of circuit patterns. Typically nearly 350 processing steps are required to convert a bare silicon wafer surface to a semiconductor chip of sufficient complexity and quality to be used, for example, in high performance logic devices found in today's personal computers. The most common processing steps of semiconductor chip manufacture are wafer-cleaning steps, accounting for over 10% of the total processing steps. These cleaning steps are normally one of two types: oxidative and etch. During oxidative cleaning steps, oxidative compositions are used to oxidize the silicon or polysilicon surface, typically by contacting the wafer with aqueous peroxide or ozone solution. During etch cleaning steps, etching compositions are used to remove native and deposited silicon oxide films and organic contaminants from the silicon or polysilicon surface before gate oxidation or epitaxial deposition, typically by contacting the wafer with aqueous acid. See, for example, L. A. Zazzera and J. F. Moulder,
J. Electrochem. Soc
., 136, No. 2, 484 (1989). The ultimate performance of the resulting semiconductor chip will depend greatly on how well each cleaning step has been conducted.
Microelectromechanical systems (MEMS) (also called micromachines or micromechanical devices) are small mechanical devices that can be made using traditional integrated circuit manufacturing techniques. Typical devices include motors, gears, accelerometers, pressure sensors, actuators, mirrors, personal information carriers, biochips, micropumps and valves, flow sensor and implantable medical devices and systems. The manufacture of MEMS results in a chip, or die, which contains the moving pieces of the device made from silicon or polycrystalline silicon (polysilicon) encased in silicon oxide. The die can also contain the circuitry necessary to run the device. One of the final steps in the manufacture of MEMS is commonly referred to as release-etch and consists of an aqueous etch utilizing hydrofluoric acid (HF) to remove the silicon oxide to free, or release, the silicon or polysilicon pieces and allow them to move.
For etch cleaning steps, the composition of choice has been dilute aqueous hydrofluoric acid (HF) and, to a lesser extent, hydrochloric acid (HCl). Currently, many semiconductor fabricators employ an “HF-last” etch cleaning process consisting of an etching step using dilute aqueous HF to etch oxides.
Another important cleaning process in semiconductor chip manufacture is the removal of residues left behind from plasma ashing or etching of dielectric, photoresist or metals. The removal of these “post-etch residues” is challenging because of their multicomponent nature (i.e., the residues are typically comprised of both organic and inorganic compounds) and because the residues are adjacent to sensitive device features that must not be damaged during residue removal. Etch cleaning processes directed at removing “post-etch residues” will often utilize an aqueous HF composition in a first step, followed by a multi-step process to remove inorganic components of the residue. For instance, ethylene glycol-HF-NH
4
F aqueous solutions are widely used for the removal of “post-etch residues” from metal lines, and dilute aqueous HF is often used to remove cap and side wall veil residues after shallow trench isolation etching. See, for example, S. Y. M. Chooi et al.,
Electrochem. Soc., Proceedings
, “Sixth International Symposium on Cleaning Technology in Semiconductor Device Manufacturing,” 99-35 (1999).
However, etch cleaning of silicon surfaces with aqueous HF compositions has presented many problems to the semiconductor chip manufacturer. For example, contact with aqueous HF compositions renders the silicon surface hydrophobic and thus very susceptible to contamination by particles such as silicon oxides and other inorganic and organic materials. To remove these particles, the etched wafer is typically rinsed with deionized water, ethyl alcohol or isopropyl alcohol and is dried prior to subsequent processing. Unfortunately, the rinse does not always effectively remove these residual particles from the wafer, as the low energy silicon wafer surface is not easily wet by aqueous or alcoholic rinsing compositions which inherently have high surface tensions. In addition, rinsing with deionized water gives rise to slow drying time, while rinsing with alcohol introduces a potential fire hazard.
Another problem with employing aqueous HF compositions for etch cleaning is the slow rate of etching realized, possibly caused by deactivation of HF by water. To overcome this slow etch rate, most aqueous HF etching compositions need to incorporate at least 0.5% HF by weight. The slow etch rate of aqueous HF solutions can be of particular importance for MEMS devices. Silicon oxide dimensions in MEMS vary but are typically on the order of 1 &mgr;m thick with lateral dimensions of 10-500 &mgr;m. Slower etch rates lead to longer processing times. Etch assist holes are often added to polysilicon structures for which large, thin regions of silicon oxide must be removed, such as for the release of micro-mirrors, in order to accommodate the slow etch rate of aqueous HF solutions and reduce etch times. The etch assist holes may adversely affect the ultimate device performance.
The compositions of the present invention may be used to prepare MEMS devices having a large critical etch dimension. The critical etch dimension is that distance that the etchant must travel to dissolve all the polysilicate glass and release the device from the silicon wafer. The present compositions can be used to release devices having a critical etch distance of 400 micrometers or more, and are preferably used to etch and release devices having a critical etch distance of 40 to 400 micrometers.
SUMMARY OF THE INVENTION
In one aspect, this invention relates to a cleaning composition useful in semiconductor and integrated circuit manufacture, the composition comprising a fluorinated solvent, hydrogen fluoride or onium complex thereof, and sufficient amount of a co-solvent to form a homogeneous mixture. Advantageously, the present invention provides a liquid substrate cleaning composition useful for etching, removal of residues, rinsing and drying that contains a relatively low concentration of HF, but has an efficient rate of etching. The present composition may also be rendered non-flammable by appropriate selection of the fluorinated solvent. Substrates useful in the present invention include silicon, germanium, GaAs, InP and other III-V and II-VI compound semiconductors. It will be understood, due to the large number of processing steps involved in integrated circuit manufacture, that the substrate may include layers of silicon, polysilicon, metals and oxides thereof, resists, masks and dielectrics.
The present invention is also particularly useful in the etch and release of microelectromechanical devices. The etch cleaning and drying of MEMS has similar issues to those for semiconductor chip manufacture. Particulate contamination on micromachines can hinder movement of the device and ultimately affect device performance or cause failure. Care is taken to rinse the device with deionized water followed by et
Behr Frederick E.
Parent Michael J.
Rajtar Paul E.
Theiss Silva K.
Weaver Billy L.
3M Innovative Properties Company
Kokko Kent S.
Webb Gregory E.
LandOfFree
Fluorinated solvent compositions containing hydrogen fluoride does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fluorinated solvent compositions containing hydrogen fluoride, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluorinated solvent compositions containing hydrogen fluoride will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2925810