Solid anti-friction devices – materials therefor – lubricant or se – Lubricants or separants for moving solid surfaces and... – Organic phosphorus compound – wherein the phosphorus is...
Reexamination Certificate
2002-12-04
2004-07-20
McAvoy, Ellen M (Department: 1764)
Solid anti-friction devices, materials therefor, lubricant or se
Lubricants or separants for moving solid surfaces and...
Organic phosphorus compound, wherein the phosphorus is...
C508S422000, C508S431000, C508S433000, C558S086000, C558S112000, C558S183000, C558S203000, C558S204000
Reexamination Certificate
active
06764984
ABSTRACT:
FIELD OF INVENTION
This invention relates to lubricant additives that provide anti-wear and friction-reducing properties when incorporated into lubricant compositions or other compositions where such properties are desired, such as motor oils.
BACKGROUND ART
A significant source of deterioration in machinery such as engines and motors that contain moving parts in mechanical motion at high temperatures is friction and wear between the contact surfaces of the moving parts. Such deterioration is particularly evident at startup and shutdown of the machinery. To combat these problems, lubricating agents such as lubricating oils, waxes and greases have traditionally been applied to the moving contact surfaces to prevent wear and to reduce friction.
Reducing or controlling friction is particularly important in motor oils, including automobile motor oils, because of the need to reduce wear, and also because this wear reduction must be accomplished while at the same time meeting standards for fuel economy as well as environmental vehicle fuel emissions control. Because of increased government regulation of vehicle fuel emissions, efforts have been made to improve engine performance, including improving engine design and emissions catalyst performance, as well as developing better additives such as lubricants and engine oil additives.
Ideally, a lubricant should provide lubrication of the entire contact surface. Such full-film contact is preferably achieved by completely coating the surfaces of the moving parts such that the parts never make contact. However, developing a full-film lubricant that is effective under the severe operating conditions of most engines and motors containing moving parts, has posed several difficulties. Design constraints, together with high load, slow speed, lubricant starvation, or low viscosity of the lubricant, may preclude full-film lubrication and increase the severity of contact. These conditions are often unavoidable during normal operation of machinery, and are particularly severe during startup and shutdown.
In cases where lubricants such as oils and greases cannot provide full-film lubrication at all times, anti-wear additives or friction modifiers are usually added. These anti-wear additives modify the surfaces to be lubricated through adsorption or chemical reaction to form coated surfaces that are characterized by reduced friction and increased wear resistance. It is generally recognized that different types of additives may interact in positive or negative ways and thereby enhance or interfere with each other's performance. Antiwear agents and friction modifiers in particular, because they are believed to function by modifying the rubbing surfaces through adsorption or chemical reaction, have a high probability of affecting each other's performance. This is because such materials adsorb on surfaces more or less strongly and compete with one another for surface adsorption sites. A strongly adsorbing material may exclude a more weakly adsorbing material from contact with the surface, thereby preventing it from exerting its effect on the surface. Such surface competition phenomena can pose significant challenges in developing additives and creating formulations where each additive can achieve its desired purpose.
Many kinds of anti-wear additives are known. In particular, organic phosphorus compounds such as dialkyl dithiophosphoric acids and dialkyl dithiophosphates have been used. Some of the most widely used and relied upon dialkyl dithiophosphates are metallic salts of dialkyl dithiophosphates, such as zinc dialkyldithiophosphates (ZDDPs), which find application in many different types of lubricants. The alkyl groups in zinc dialkyl dithiophosphates are typically derived from non-fluorinated alcohols that have been selected, based on chain length and degree of functional substitution, to impart desirable performance characteristics, such as solubility in the lubricant base fluid and thermal stability to the ZDDP. It is recognized that these characteristics can be changed by careful selection of the alkyl groups to optimize performance in particular applications.
ZDDP compositions are known to be effective in many formulations. This is evidence that they can compete very effectively for surface adsorption sites and thereby exert their effect on the rubbing surfaces. It might be predicted, therefore, that because ZDDPs adsorb strongly at surfaces and form very effective antiwear films by their chemical action at surfaces, such compounds would exclude other antiwear additives from adsorbing and exerting their effects at the surface.
Although ZDDPs have been used for many years in passenger car motor oil, their use is currently restricted because they contain phosphorus, and the amount of this element in motor oils is limited to less than 0.1%, since the phosphorus from ZDDP poisons catalytic converters, leading to increased vehicle emissions. It is anticipated that the future use of ZDDPs may be reduced even more than the current level. Anti-wear additives that can be used in place of ZDDPs, or in addition to them, are therefore of great interest.
ZDDPs have also been used in combination with certain molybdenum (Mo) additives, including soluble molybdenum additives such as molybdenum dialkyl dithiophosphates, molybdenum dialkyl dithiocarbamates and molybdenum amide complexes. One limitation of such ZDDP-Mo additive combinations, however, is that the molybdenum additives frequently reduce the anti-wear effectiveness of the ZDDPs, which is highly undesirable.
Other additives that may be included in lubricants as anti-wear additives include fluorinated organic compounds. Typical fluorinated compounds that may be used as lubricant additives include polytetrafluoroethylene (PTFE) and perfluoropolyether (PFPE). Fluorinated organic compounds, particularly esters and ethers, have been disclosed as lubricants for magnetic media, for example, in Japanese Patent 259482, Japanese Patent 08259501, and U.S. Pat. Nos. 5,578,387; 5,391,814 and 5,510,513.
Japanese Patent 01122026 teaches use of fluorine containing dibasic acid esters derived from diacids up to C
8
as lubricants for magnetic media. This publication, as does PCT publication, US/92/08331, teaches that the acid structure from which the diester is formed may have double bonds present. The molecular structures taught by each of these publications may also have fluorine atoms present in each of the end group.
Partly-fluorinated adipic acid diesters, R
f
(CH
2
)
x
O
2
C(CH
2
)
4
CO
2
(CH
2
)
x
R
f
, have been disclosed as lubricating coatings by Russian patent SU 449925. Bowers et al. (Lubr. Eng., July-August, 1956, pages 245-253) studied the boundary lubricating properties of several similar esters. The compounds disclosed in this publication have fluorine present in each of the diester groups, however the fluorination is symmetric. These symmetric, partially fluorinated esters have very low solubility in conventional lubricant base fluids and are therefore, of limited utility as additives in such base fluids.
Japanese Patent 2604186 discloses 1,2,3,4-butane-tetracarboxylic acid tetraesters with partly-fluorinated alcohols, but since all four ester groups are derived from fluorinated alcohols, these esters, too, are symmetric. Other examples of the teaching of symmetrically fluorinated molecular structures include U.S. Pat. Nos. 4,203,856; 5,066,412 and 4,039,301 and in JP08259482 and JP08259501.
Fluorine-containing tri-carbonyl compounds, including some esters, are disclosed as lubricant additives in Japanese patent JP 07242584, and partial fluoroesters of polycarboxylic acids, in which the acid functional groups are not completely esterified was taught in U.S. Pat. No. 3,124,533.
Fluorinated organic compounds are thought to protect metal surfaces from wear by forming metal fluorides on the coated surfaces. Surface studies of coated metal surfaces suggest that the fluorinated organic compounds undergo tribochemical reactions, which are friction-stimulated chemical reactions, with the metal su
Deitch Gerald E.
E. I. du Pont de Nemours and Company
McAvoy Ellen M
LandOfFree
Fluorinated lubricant additives does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fluorinated lubricant additives, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluorinated lubricant additives will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3238715