Fluorescent lamp with luminescent material layer thickness...

Electric lamp and discharge devices – With luminescent solid or liquid material – With gaseous discharge medium

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C313S485000, C313S491000, C313S634000

Reexamination Certificate

active

06340862

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a fluorescent lamp for dielectrically impeded discharges. Such a fluorescent lamp has a discharge vessel with a gas filling, and a fluorescent layer. An electrode structure is designed for a dielectrically impeded discharge, that is to say at least a portion of the electrodes is separated from the gas filling by a dielectric. The details of the design of the lamp are gone into here only to the extent required to understand the invention.
Otherwise, reference is made to the following published prior art, the disclosure content of which is incorporated herewith:
DE 196 36 965.7=WO 97/01989 DE 195 26 211.5=WO 97/04625 and DE-Patent 43 11 197.1=WO 94/23 442.
In this case, the first of the cited applications exhibits an electrode structure which is configured specially by means of nose-like extensions of the cathodes and fixes a geometric distribution of partial discharges during operation of the lamp.
SUMMARY OF THE INVENTION
This invention is based on the technical problem of developing a fluorescent lamp of the type mentioned at the beginning such that the light-emitting properties are optimized.
According to the invention, this problem is solved by means of a fluorescent lamp having a discharge vessel filled with a gas filling and with a fluorescent layer, and having an electrode structure for a dielectrically impeded discharge, in which fluorescent lamp the electrode structure fixes a geometric distribution of partial discharges during operation of the lamp, wherein the fluorescent lamp has a varying layer thickness tuned to the geometric distribution.
The invention proceeds from the consideration that the uniformity of the luminance of a light exit surface is essential for important possibilities of applying fluorescent lamps with dielectrically impeded discharges. This relates, in particular, to the design, denoted as a flat radiator, of those fluorescent lamps having the discharge vessel constructed essentially from two parallel plates and a frame therebetween. Such flat radiators can be used, in particular, for the backlighting of display devices, chiefly liquid crystal display screens. In order to avoid disturbing the legibility and the appearance of the display, luminance fluctuations of, for example, 15% are already critical in this case. However, the uniformity of the luminance can also play a role in other technical fields, and this invention is not limited to the field of flat radiators or the backlightings of display devices.
Separating luminance variations in the case of which compensation by means of the measures of this invention is useful from luminance variations which can be tolerated depends largely on the requirements of the respective field of use. In particular, in the case of application to the backlighting of liquid crystal display screens, luminance reductions in the regions between partial discharges should be compensated in any case by more than 20% with respect to the maxima, preferably starting as early as limits of 15%, 10% or 5%.
If said range of luminance reduction of more than 20% with respect to the maxima is defined as the intermediate discharge range, according to a refinement in accordance with the invention reductions in the layer thickness of the fluorescent layer to 30%-95%, preferably 50%-90%, of the maximum layer thickness are provided immediately over the discharges for the intermediate discharge regions in a fashion averaged over their surface.
Since, in the case of the fluorescent lamps according to the invention it is advantageous in any case for temporal and spatial stability of the overall discharge structure to take measures which spatially fix the individual partial discharges of the overall discharge structure, the basic idea of the invention consists in utilizing this fixing of the partial discharges to the further effect of not, as is conventional, depositing the fluorescent layer of the fluorescent lamp flat and homogeneous, but of designing it with a layer thickness variation tuned to the specified geometric distribution of the partial discharges.
For example, the partial discharges fixed by means of the abovementioned nose-like cathode projections, which partial discharges are of essentially triangular formation in the case of the operation, given preferential consideration here, of active-power units launched pulsewise, stand with a vertex of the triangle on a respective cathode nose and can thereby be distributed in a predictable way. An quasi-complementary distribution of the fluorescent material can then lead to a compensation of the variations in the luminance, which would arise in the case of a homogeneous fluorescent layer thickness on the basis of the partial discharge distribution.
This possibility emerges from the fact that thinning of the fluorescent layer in a locally limited region leads in accordance with the findings of the inventor to a local increase in the luminance. This result is initially surprising, since a reduction in the generated quantity of visible light would be inferred as obvious from a reduction in the quantity of fluorescent material. However, the distribution of the visible light in the discharge vessel is so diffuse and undirected overall that a local thinning of the fluorescent layer initially has no perceptible effects on the visible light intensity present, but rather permits a larger portion of the visible light to exit from the fluorescent lamp owing to the locally reduced absorption and reflection in the fluorescent layer.
It is entirely possible in this case, and also intended in conjunction with the employed terms of layer thickness variation or reduction in the layer thickness, to form local cutouts in the fluorescent layer, that is to say to reduce the layer thickness to zero.
It is to be stated, furthermore, that the term partial discharges is not intended to be limited to partial discharges separated cleanly from one another. Rather, overall discharge structures can also be conceived in which partial discharges are rather local centroids of an overall discharge structure having a plurality of centroids.
Finally, the invention is not fixed on a specific form of an electrode structure fixing the arrangement of the partial discharges, in particular not fixed on the cathode projections already mentioned. In addition to these cathode projections, thickness variations of an electrode dielectric are also possible, for example. Thus, in bipolar operation of a dielectric discharge, all the electrodes are covered with a dielectric layer, because the anode and cathode roles of individual electrodes interchange alternately. In the case of unipolar operation, at least the anodes are covered with a dielectric layer. In order to reduce sputter damage on the cathodes, the latter are, however, frequently likewise covered with a—possibly thinner—dielectric layer. In each of the abovenamed cases, the thickness of the respective dielectric layers in their spatial surface distribution plays a role in the arrangement of the individual partial discharges. With a thinner layer thickness, the high-frequency resistance for the high-frequency Fourier components of individual active-power pulses drops, and thus the electric field effectively present in the gas filling rises. Consequently, the partial discharges tend to an arrangement of local thinned regions of dielectric layers on the electrodes.
Furthermore, the electrode width can also be varied. The partial discharges tend in this case to the arrangement of locally widened points of the electrodes. This is probably caused by the fact that a larger locally available electrode surface in turn causes a lower high-frequency resistance and a larger-area distribution of the shielding countercharges built up on the dielectric surface.
In the thickness variation of the fluorescent layer according to the invention, it can be preferred to generate an approximately continuous transition between regions of maximum and minimum layer thickness. For this purpose, it is possible to use

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluorescent lamp with luminescent material layer thickness... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluorescent lamp with luminescent material layer thickness..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluorescent lamp with luminescent material layer thickness... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2830921

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.