Electric lamp and discharge devices – With luminescent solid or liquid material – With gaseous discharge medium
Reexamination Certificate
2002-08-22
2003-11-18
Kim, Robert H. (Department: 2882)
Electric lamp and discharge devices
With luminescent solid or liquid material
With gaseous discharge medium
C313S492000, C313S493000, C313S483000
Reexamination Certificate
active
06650041
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to fluorescent lamps and is directed more particularly to an amalgam assembly including an improved amalgam for use within an exhaust tubulation of a fluorescent lamp, and to a fluorescent lamp including the amalgam assembly.
2. Description of the Prior Art
The light output of fluorescent lamps is critically dependent upon mercury vapor pressure (vapor density) within the lamp envelope. The mercury vapor pressure, in turn, is controlled by the temperature of excess liquid mercury which condenses in the coldest part of the lamp envelope, the so-called “cold spot”. Fluorescent lamps typically include at least one tubulation that has an opening into the interior of the lamp envelope and which, in construction of the lamp, is used as an exhaust and fill tubulation. At completion of manufacture, the exhaust tubulation is hermetically tipped off and the tipped end typically becomes the lamp “cold spot”.
The amalgam is commonly located in the exhaust tubulation cold spot. Such amalgams reduce the mercury vapor pressure relative to that of pure mercury at any given temperature and thereby permit optimum light output at elevated temperatures. Such amalgams also provide a broadened peak in the light output versus temperature curve, so that near optimum light output is obtained over an extended range of ambient temperatures.
When lamps are operated at temperatures lower or higher than the optimum ambient temperature, light output decreases by as much as 30% or more relative to peak value. This is a common occurrence when lamps are operated in enclosed or semi-enclosed fixtures. In addition to reduced light output, the color of the light varies as a result of the varying contribution of blue spectral emission from the mercury vapor in the discharge.
The problem of mercury vapor pressure control under varying temperature conditions is solved, at least in part, through the use of various alloys capable of absorbing mercury from its gaseous phase. Alloys of low temperature melting metals are often placed within fluorescent lamps to amalgamate with the excess mercury, and to regulate the mercury vapor pressure within the lamp. Alloys known to be particularly useful in forming amalgams with mercury include a lead-bismuth-tin alloy, a bismuth-indium alloy, a bismuth and tin alloy, and a zinc, indium and tin alloy. Other useful amalgams may be formed with pure indium, pure lead, and pure zinc.
The lamp typically is provided with an excess amount of mercury amalgam, that is, more amalgam than is needed to supply the mercury vaporized when the lamp reaches a stabilized operating condition. As the lamp ages, some of the excess amalgam is required to replace the mercury chemically bound elsewhere in the lamp during the life of the lamp.
When an amalgam fluorescent lamp is turned off, the amalgam cools and the mercury vapor within the lamp is gradually absorbed into the amalgam. When the lamp is turned on, the lumen output is significantly reduced until the amalgam is warmed up to a point at which the amalgam emits sufficient mercury vapor to permit efficient lamp operation.
In some types of lamps, particularly electrodeless fluorescent lamps, it is important that the amalgam be prevented from settling within the arc environment in the lamp envelope where the amalgam can cause deleterious changes in the lumen output and the lumen-temperature performance of the lamp.
In base-up lamps, there has been a particular problem in that, in use, the sealed end of the tubulation is pointed upwardly and the end of the tubulation that opens into the lamp envelope is disposed downwardly of the amalgam, and the amalgam has tended to drop by gravity downwardly into the lamp envelope, where a much higher temperature is present, causing a sudden rise in mercury vapor pressure and an increase in lamp voltage, resulting in the occurrence of black spots on the glass envelope. If the lamp voltage exceeds the maximum sustaining voltage of the ballast provided in the lamp, the lamp extinguishes. There is thus required a means for retaining liquid amalgam in the tubulation, but permitting mercury vapor to exit the tubulation and flow into the lamp envelope.
Accordingly, there is a need for an amalgam assembly including an improved amalgam and/or an improved amalgam retention means, for limiting the amalgam to the tubulation sealed end region. There is further a need for a fluorescent lamp provided with such an amalgam assembly and/or amalgam retention means.
SUMMARY OF THE INVENTION
An object of the invention is, therefore, to provide an amalgam assembly featuring an improved amalgam for disposition in an exhaust tubulation of a fluorescent lamp to prevent migration of liquid amalgam into the lamp envelope.
A further object of the invention is to provide an amalgam assembly featuring an improved tubulation in which to dispose an amalgam body, the improved tubulation preventing migration of liquid amalgam into the lamp envelope.
A still further object of the invention is to provide an electrodeless fluorescent lamp having therein an amalgam assembly featuring an improved amalgam and/or an improved amalgam retention means in the exhaust tubulation.
With the above and other objects in view, as will hereinafter appear, a feature of the present invention is the provision of an amalgam assembly for a fluorescent lamp. The assembly comprises a glass exhaust tubulation extending toward a base portion of the lamp, the tubulation being closed at an end thereof adjacent the lamp base portion, and a retaining structure disposed in the tubulation and retained by a pinched portion of the tubulation.
A mercury amalgam body is disposed in the tubulation between the retaining structure and the tubulation closed end, the amalgam body including lithium for wetting internal surfaces of the glass tubulation to cause the amalgam to adhere to tubulation internal surfaces when the amalgam body is liquidized, and to thereby prevent the amalgam body from flowing past the retaining structure and into the lamp envelope.
In accordance with a further feature of the invention, there is provided an amalgam assembly for a fluorescent lamp. The assembly comprises a glass exhaust tubulation extending toward a base portion of the lamp, the tubulation being closed at an end thereof adjacent the lamp base portion, and a layer of metal containing lithium adhered to an inside surface of the exhaust tubulation. A mercury amalgam body is disposed in the tubulation between the tubulation closed end and a pinched portion of the tubulation. Upon liquidizing of the amalgam body, the liquid amalgam adheres to the layer, to thereby prevent the amalgam from flowing past the tubulation pinched portion and into the lamp envelope.
In accordance with a still further feature of the invention, there is provided an electrodeless fluorescent lamp assembly comprising a light-transmissive envelope containing an ionizable, gaseous fill for sustaining an arc discharge when subjected to a radio frequency magnetic field and for emitting ultraviolet radiation as a result thereof, the envelope having an interior phosphor coating for emitting visible radiation when excited by the ultraviolet radiation, and the envelope having a re-entrant cavity formed therein. An excitation coil is contained within the re-entrant cavity for providing the radio frequency magnetic field when excited by a radio frequency power supply. A glass exhaust tubulation extends through the re-entrant cavity and into the envelope, the exhaust tubulation having a closed end proximate a base portion of the lamp. A pinched configuration is formed in the exhaust tubulation at a predetermined distance from the tubulation closed end, and a retaining structure is disposed in the tubulation and retained by the pinched configuration. A mercury amalgam body is disposed in the tubulation between the retaining structure and tubulation closed end, the amalgam body including lithium for wetting internal surfaces of the glass tubulation touched by the amal
Lester Joseph E.
Speer Richard S.
Bessone Carlo
Gemmell Elizabeth
Osram Sylvania Inc.
LandOfFree
Fluorescent lamp and amalgam assembly therefor does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fluorescent lamp and amalgam assembly therefor, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluorescent lamp and amalgam assembly therefor will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3170734