Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving hydrolase
Reexamination Certificate
2002-03-28
2004-09-21
Leary, Louise N. (Department: 1654)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving hydrolase
C435S004000, C435S968000
Reexamination Certificate
active
06794158
ABSTRACT:
FIELD OF THE INVENTION
This invention relates generally to a fluorescence polarization assay useful in the detection and evaluation of soluble epoxide hydrolase (sEH) inhibitors. This invention also relates to novel fluorescent probes used in the fluorescence polarization assay, and methods of manufacturing such fluorescent probes.
BACKGROUND OF THE INVENTION
Epoxide hydrolases are a group of enzymes ubiquitous in nature, detected in species ranging from plants to mammals. These enzymes are functionally related in that they all catalyze the addition of water to an epoxide, resulting in a diol. Epoxide hydrolases are important metabolizing enzymes in living systems. Epoxides are reactive species and once formed are capable of undergoing nucleophilic addition. Epoxides are frequently found as intermediates in the metabolic pathway of xenobiotics. Thus in the process of metabolism of xenobiotics, reactive species are formed which are capable of undergoing addition to biological nucleophiles. Epoxide hydrolases are therefore important enzymes for the detoxification of epoxides by conversion to their corresponding, non-reactive diols.
In mammals, several types of epoxide hydrolases have been characterized including soluble epoxide hydrolase (sEH), also referred to as cytosolic epoxide hydrolase, cholesterol epoxide hydrolase, LTA
4
hydrolase, hepoxilin hydrolase, and microsomal epoxide hydrolase (Fretland and Omiecinski, Chemico-Biological Interactions, 129: 41-59 (2000)). Epoxide hydrolases have been found in all tissues examined in vertebrates including heart, kidney and liver (Vogel, et al., Eur J. Biochemistry, 126: 425-431 (1982); Schladt et al., Biochem. Pharmacol., 35: 3309-3316 (1986)). Epoxide hydrolases have also been detected in human blood components including lymphocytes (e.g. T-lymphocytes), monocytes, erythrocytes, platelets and plasma. In the blood, most of the sEH detected was present in lymphocytes (Seidegard et al., Cancer Research, 44: 3654-3660 (1984)).
The epoxide hydrolases differ in their specificity towards epoxide substrates. For example, sEH is selective for aliphatic epoxides such as epoxide fatty acids while microsomal epoxide hydrolase (mEH) is more selective for cyclic and arene oxides. The primary known physiological substrates of sEH are four regioisomeric cis epoxides of arachidonic acid known as epoxyeicosatrienoic acids or EETs. These are 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid. Also known to be substrates are epoxides of linoleic acid known as leukotoxin or isoleukotoxin. Both the EETs and the leukotoxins are generated by members of the cytochrome P450 monooxygenase family (Capdevila, et al., J. Lipid Res., 41: 163-181 (2000)).
The various EETs appear to function as chemical mediators that may act in both autocrine and paracrine roles. EETs appear to be able to function as endothelial derived hyperpolarizing factor (EDHF) due to their ability to cause hyperpolarization of the membranes of vascular smooth muscle cells with resultant vasodilation (Weintraub, et al., Circ. Res., 81: 258-267 (1997)). EDHF is synthesized from arachidonic acid by various cytochrome P450 enzymes in endothelial cells proximal to vascular smooth muscle (Quilley, et al., Brit. Pharm., 54: 1059 (1997)); Quilley and McGiff, TIPS, 21: 121-124 (2000)); Fleming and Busse, Nephrol. Dial. Transplant, 13: 2721-2723 (1998)). In the vascular smooth muscle cells EETs provoke signaling pathways involving ADP ribosylation of various protein substrates, leading to activation of BK
Ca2+
(big Ca
2+
activated potassium channels). This results in hyperpolarization of membrane potential, inhibition of Ca
2+
influx and relaxation (Li et al., Circ. Res., 85: 349-356 (1999)). Endothelium dependent vasodilation has been shown to be impaired in different forms of experimental hypertension as well as in human hypertension (Lind, et al., Blood Pressure, 9: 4-15 (2000)). Hence, it is likely that enhancement of EETs concentration would have a beneficial therapeutic effect in hypertensive patients where this plays a causative role. Examples of other conditions where enhanced vasodilation could play a positive role include angina, diabetes, stroke, ischemia, and pulmonary hypertension.
Other effects of EETs that may influence hypertension involve effects on kidney function. Levels of various EETs and their hydrolysis products, the DHETs, increase significantly both in the kidneys of spontaneously hypertensive rats (SHR) (Yu, et al., Circ. Res. 87: 992-998 (2000)) and in women suffering from pregnancy induced hypertension (Catella, et al., Proc. Natl. Acad. Sci. U.S.A., 87: 5893-5897 (1990)). In the rat model, both cytochrome P450 and sEH activities were found to increase (Yu et al., Molecular Pharmacology, 2000, 57, 1011-1020). Addition of a known sEH inhibitor was shown to decrease the blood pressure to normal levels. Finally, male soluble epoxide hydrolase null mice exhibited a phenotype characterized by lower blood pressure than their wild-type counterparts (Sinal, et al., J. Biol. Chem., 275: 40504-40510 (2000)).
An analogous effect on smooth muscle appears to operate in the lungs involving epithelial cells and airway smooth muscle relaxation (Dumoulin, et al., Am. J. Physiol., 275 (Lung Cell. Mol. Physiol. 19): L423-L431 (1998); Kiss, et al., Am. J. Resp. Crit. Care Med., 161: 1917-1923 (2000)). Hence, disease states where airways are overly constricted such as asthma, COPD, and bronchitis could benefit from enhanced EETs levels.
EETs, especially 11,12-EET, also have been shown to exhibit anti-inflammatory properties (Node, et al., Science, 285: 1276-1279 (1999); Campbell, TIPS, 21: 125-127 (2000); Zeldin and Liao, TIPS, 21: 127-128 (2000)). Node, et al. have demonstrated 11, 12-EET decreases expression of cytokine induced endothelial cell adhesion molecules, especially VCAM-1. They further showed that EETs prevent leukocyte adhesion to the vascular wall and that the mechanism responsible involves inhibition of NF-KB and IKB kinase.
In addition to the physiological effect of some substrates of sEH (EETs, mentioned above), some diols, i.e. DHETs, produced by sEH may have potent biological effects. For example, sEH metabolism of epoxides produced from linoleic acid (leukotoxin and isoleukotoxin) produces leukotoxin and isoleukotoxin diols (Greene, et al., Arch. Biochem. Biophys. 376(2): 420-432 (2000)). These diols were shown to be toxic to cultured rat alveolar epithelial cells, increasing intracellular calcium levels, increasing intercellular junction permeability and promoting loss of epithelial integrity (Moghaddam et al., Nature Medicine, 3: 562-566 (1997)). Therefore these diols could contribute to the etiology of diseases such as adult respiratory distress syndrome where lung leukotoxin levels have been shown to be elevated (Ishizaki, et al., Pulm. Pharm. & Therap., 12: 145-155 (1999)). Hammock, et al. have disclosed the treatment of inflammatory diseases, in particular adult respiratory distress syndrome and other acute inflammatory conditions mediated by lipid metabolites, by the administration of inhibitors of epoxide hydrolase (WO 98/06261; U.S. Pat. No. 5,955,496).
A number of classes of sEH inhibitors have been identified. Among these are chalcone oxide derivatives (Miyamoto, et al. Arch. Biochem. Biophys., 254: 203-213 (1987)) and various trans-3-phenylglycidols (Dietze, et al., Biochem. Pharm. 42: 1163-1175 (1991); Dietze, et al., Comp. Biochem. Physiol. B, 104: 309-314 (1993)).
More recently, Hammock et al. have disclosed certain biologically stable inhibitors of sEH for the treatment of inflammatory diseases, for use in affinity separations of epoxide hydrolases and in agricultural applications (U.S. Pat. No. 6,150,415). The Hammock '415 patent also generally describes that the disclosed pharmacophores can be used to deliver a reactive functionality to the catalytic site, e.g., alkylating agents or Michael acceptors, and that these reactive functionalities can be used to deliver fluorescent or affinity labels to the enzyme active site for enz
Cardozo Mario G.
Grygon Christine Anne
Ingraham Richard Harold
Kroe Rachel Rebecca
Proudfoot John Robert
Boehringer Ingelheim Pharmaceuticals Inc.
Datlow Philip I.
Leary Louise N.
Morris Michael P.
Raymond Robert P.
LandOfFree
Fluorescence polarization assay does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fluorescence polarization assay, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluorescence polarization assay will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3223441