Fluidic pressure regulator

Fluid handling – Line condition change responsive valves – With separate connected fluid reactor surface

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S505410

Reexamination Certificate

active

06305415

ABSTRACT:

BACKGROUND OF THE PRESENT INVENTION
The present invention relates to a precision fluidic pressure regulator and particularly to a reliable subminiature fluidic pressure regulator.
Fluidic pressure regulators are widely used for transferring and controlling of a controlled pressure from a supply source to an output or load device. Pneumatic and other fluidic systems are widely known and applied in both control and regulating fields. There is a particular need for a small fluidic pressure regulator which can maintain a given secondary or output pressure with changes in the primary or supply pressure furnished from a pressure source. There is a further need for a design and construction of pressure regulators of subminiature size which can provide the desired regulation for normal flow applications and also for dead ended applications with a varying pressure source. A non-bleed and non-relieving fluidic pressure regulator is desirable because it permits the use of a limited supply source such as a pressurized pneumatic tank or cartridge, without wasting of any of the source fluid and pressure while maintaining the desired output pressure characteristic.
SUMMARY OF THE PRESENT INVENTION
The present invention provides a pressure regulator with a fluidic valve which can be constructed and operated advantageously for the non-bleed, non-relieving type of a load system as well as in a bleed, relieving application. It has been particularly applied in “dead-ended” applications from a varying pressurized pneumatic tank or cartridge with an essentially constant output level with changes in the supply pressure at the input side of the regulator.
Generally in accordance with the present invention, the pressure regulator includes a valve assembly including a supply chamber and an output chamber separated by a valve unit. The output chamber has a movable wall, preferably provided at one end of the output chamber. The valve unit includes a valved passageway connected between the supply chamber and the output chamber of the valve assembly. A movable valve member is connected to the movable wall and is operable to open and close the valved passageway of the valve unit, and thereby provide a transfer of the pressurized supply from the input to the output chamber. A closed control chamber is located adjacent said valve assembly and output chamber and includes a control pressure chamber within which an adjustable control member is located. The control member includes a member extended from the chamber and connected to the movable wall and is configured for resiliently biasing of the movable wall to place the movable valve member to open the valved passageway and thereby provide for transfer of pressure to the output chamber which is then operable to increase the pressure in the output chamber and reset the movable wall and the control member to close the valved passageway.
In accordance with one significant feature of the invention, a pressure balancing passageway connects the supply chamber to the control chamber to maintain a corresponding pressure state in both chambers. The output thereby is controlled by the control mechanism of the control chamber biasing and setting of the movable wall and its interconnection to the valve element or member of the valve unit.
In a preferred construction, the movable wall includes a flexible diaphragm which is clamped between a valve body and a control body and defines the outer wall of the output chamber. The valve body and control body are contained within an outer tubular housing to support the same in predetermined relation. The movable wall defines the outer wall of the output chamber, with the connection between the valve body and control body connected to reference such as atmosphere. The valve unit includes a valve wall within the valve body spaced from the movable wall and defining a supply chamber and an output chamber which includes the movable wall. The valve wall includes a central seal element with a valve rod passing through the seal element and with the one end connected to the movable wall. The valve rod forms a passageway with opposite ends and with the first end aligned with the seal element within the valve wall in the closed position. The send end of the passageway is connected to the output chamber. The valve rod may be formed with various structures to form the fluid connection between the input and output chamber. The seal element within the valve wall is preferably a resilient annular member with the valve rod passing therethrough and sealably engaging the surface of the valve rod, and particularly the first end of the valve rod.
The control chamber has an outer wall spaced from the valve body and with a control rod passing through an annular seal to maintain a sealed control chamber. The outer end of the control rod is connected to the movable wall. A spring or other suitable bias system, where an adjustable control is provided, is mounted within the sealed control chamber and coupled to the control rod to selectively bias the rod and the interconnected movable wall inwardly of the output chamber. Equalized pressure between the supply chamber and the control chamber is established by a passageway extended between the respective valve body and the control body which results in the movable wall being positioned in accordance with the setting of the bias system connected to the control rod. This preferred system has been found to provide a highly effectively miniature pneumatic valve structure from both the operating and cost requirements.
The valve elements may be readily formed of suitable plastics which are readily assembled to form various sized valve units and is particularly adapted for construction of relative small pressure regulators. In practice, a sub-miniature valve having a rectangular construction and with an adjustable unit has been constructed having a measurement of an inch in length and one-half inch square. A fixed and nonadjustable unit has been readily constructed with a generally rectangular configuration having a length of approximately five-eighths inch and one-half inch square cross section. These dimensions can readily be varied within a reasonable range from the typical examples.
The above structure is in contrast to the generally present round or cylinder construction of one and three quarter inches and one and one quarter inches for standard fixed versions, and two and one quarter and one and one quarter inches for adjustable version.
The present invention is, in summary, readily, and at a significant effect cost, constructed in various sizes and with a fixed or adjustable preset pressure versions. The regulator may be formed with a wide range of pressure ratings and typically for 200 PSI, 500 PSI, 2500 PSI and larger. The regulator may be of a nonbleed
onrelieving type or a constant bleed, relieving type.
The present invention thus particularly provides an available small compact pressure regulator which can be used in both subminiature applications and in the various other applications.


REFERENCES:
patent: 1267281 (1918-05-01), Schneider
patent: 1525426 (1925-02-01), Mueller et al.
patent: 2487089 (1949-11-01), Anthes
patent: 3782858 (1974-01-01), Deters

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluidic pressure regulator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluidic pressure regulator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluidic pressure regulator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2558203

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.