Fluid-type torque transmission device with lockup clutch

192 clutches and power-stop control – Vortex-flow drive and clutch – Including drive-lockup clutch

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S889500, C072S085000

Reexamination Certificate

active

06769522

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates to a fluid-type torque transmission device having a lockup clutch e.g., a torque converter or a fluid coupling. More specifically, the present invention relates to a fluid-type torque transmission device having a sliding contact surface formed on its front cover for sliding against the lockup clutch.
2. Background Information
In general, a torque converter is designed to facilitate smooth acceleration and deceleration because it transfers power using a fluid. However, slippage of the fluid causes energy loss to occur and fuel economy to be poor.
Therefore, conventional torque converters are equipped with a lockup device that mechanically couples a front cover on an input side to a turbine on an output side. The lockup device is disposed in a space between the front cover and the turbine. The lockup device chiefly has a circular disk-shaped piston, a driven plate, and a torsion spring. The circular disk-shaped piston can couple to the front cover. The driven plate is mounted to the rear surface of the turbine. Further, a torsion spring elastically couples the piston and the driven plate together in a rotational direction. An annular facing part is fixed to the piston in a position opposite a flat sliding contact surface of the front cover.
In the conventional lockup device just described, the operation of the piston is controlled by the change in hydraulic pressure within a main body of the torque converter. More specifically, when the lockup engagement is released, operating oil is delivered from the external hydraulic circuit to the space between the piston and the front cover. This operating oil flows radially outward through the space between the front cover and the piston and enters the main body of the torque converter from a radially outward location. When the lockup device is engaged, the operating oil between the front cover and the piston is drained from a radially inward location and the hydraulic pressure difference causes the piston to move toward the front cover. As a result the facing part provided on the piston is pressed against the sliding contact surface of the front cover. Thus, the torque of the front cover is transmitted to the turbine via the lockup device.
A conventional front cover is a disk-shaped member made of sheet metal formed by press molding. The front cover chiefly has a radial flange part, an axial flange part, and an inside cylindrical portion. The radial flange part has a sliding contact surface corresponding to the facing part of the lockup clutch. The axial flange part extends axially from the outer circumferential edge of the radial flange part and is fixed by welding to the pump impeller. The inside cylindrical portion is located radially inward of the radial flange part. A center boss is welded to the inner circumferential edge of the front cover, i.e., the inner circumferential edge of the inside circumferential portion.
The front cover requires a certain degree of strength in order to withstand the hydraulic pressure inside the torque converter and the internal pressure caused by rotation. In order to secure the required strength, it is necessary conventionally to use raw material that has a large thickness. A front cover made with such material is heavy and expensive. Thus, it has been difficult to reduce the weight of the front cover while also maintaining sufficient strength in conventional front covers.
The shells of the front cover and impeller are fixed together by welding. More specifically, a cylindrical axial flange part that extends in the axial direction is formed on the outer circumferential edge of the front cover and the outer circumferential edge of the impeller shell is welded to the tip of the flange part. The welding is accomplished using a plurality of torches that weld the two members in the circumferential direction at a plurality of locations.
Since the welding is conducted over a certain amount of time, uneven stresses in the welding bead portion cause welding distortion to occur in the front cover and the sliding contact surface provided on the radial flange part becomes wavy in the circumferential direction. Consequently, when the lockup device frictionally engages, the desired friction characteristic cannot be obtained and wheel vibration occurs.
In view of the above, there exists a need for a fluid-type torque transmission device with a lockup device that overcomes the above mentioned problems in the prior art. This invention addresses this need in the prior art as well as other needs, which will become apparent to those skilled in the art from this disclosure.
SUMMARY OF THE INVENTION
An object of the present invention is to reduce the weight of the front cover while also maintaining sufficient strength.
Another object of the present invention is to make it difficult for distortion of the front cover sliding contact surface to occur when the front cover and impeller shell are welded together.
A fluid-type torque transmission device with a lockup clutch in accordance with a first aspect of the present invention has a front cover, a turbine, a pump impeller, and a lockup clutch. The front cover is fixed to an input shaft. The turbine is connected to an output shaft. The pump impellers are connected by welding to the front cover. The lockup clutch has a facing part for sliding against the front cover. The front cover has a radial flange part that extends in the radial direction and an axial flange part that extends in the axial direction from the outside edge of the radial flange part. Preferably, the flange parts are formed integrally as a single unit. The radial flange part has a sliding contact surface for sliding against the facing part on an axially facing surface of the radial flange part. The axial flange part has a connection part at one end where it connects to the radial flange part and a welding part at the other end where it is connected by welding to the pump impeller. The axial flange part is formed such that the region containing the welding part has a lower rigidity than the region containing the connection part.
Since the region containing the welding part has a lower rigidity than the region containing the connection part with this fluid-type torque transmission device, the region containing the welding part distorts relatively easily and the region containing the connection part does not distort easily when the welding part of the front cover is welded to the pump impeller. As a result, it is difficult for welding distortion to occur at the sliding contact surface of the front cover.
A fluid-type torque transmission device with a lockup clutch in accordance with a second aspect of the present invention is the device of the first aspect, wherein the rigidity of the region containing the welding part is made smaller than the rigidity of the region containing the connection part by making the wall thickness of the region containing the welding part thinner than the wall thickness of the region containing the connection part.
This fluid-type torque transmission device employs a simple method to make it more difficult for welding distortion to occur at the sliding contact surface of the front cover.
A fluid-type torque transmission device with a lockup clutch in accordance with a third aspect of the present invention is the device of second aspect, wherein the region containing the welding part occupies at least 30% of the entirety of the axial flange part.
This fluid-type torque transmission device makes it even more difficult for welding distortion to occur at the sliding contact surface of the front cover.
A fluid-type torque transmission device with a lockup clutch in accordance with a fourth aspect of the present invention is the device of the second aspect, wherein the axial length of the region containing the welding part is longer than the axial length of the region containing the connection part.
This fluid-type torque transmission device makes it even more difficult for welding distortion to occur at the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid-type torque transmission device with lockup clutch does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid-type torque transmission device with lockup clutch, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid-type torque transmission device with lockup clutch will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3314213

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.