Fluid treatment apparatus

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Mechanical measurement system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S266000, C700S267000, C700S271000, C210S614000

Reexamination Certificate

active

06556930

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention (Technical Field)
The present invention relates to the field of fluid monitoring and treatment apparatuses.
2. Background Art
Many different instruments are required to measure the parameters of wastewater, process water, or other fluid being sampled. Maintaining these individual components and tracking the data from these individual components is cumbersome. For example, samplers, flow meters, pH meters, temperature gauges, conductivity and ORP meters, etc., are all used to monitor and track the quality of wastewater, process water, or other fluid being sampled. In fact, most water treatment monitoring systems today comprise an assortment of individual meters and gauges. These individual components are not integrated.
Currently, microprocessor-based control systems are being used in modern industrial processes, including water treatment applications and programmable logic controllers (PLCs) are microprocessor-based. Programmable logic controllers were designed to be a microprocessor-based replacements for hardwired relay logic historically used in industrial control systems. PLCs are programmed to simulate the same type of control that could be accomplished by sets of relays and timers. This is referred to as logic control. Logic control allows certain specific actions to occur based upon other actions or conditions. PLCs have the ability to quickly scan inputs and control outputs based upon the condition of the inputs. However, most PLCs do not have any provisions for storing data (referred to as data logging) or for displaying data on a screen without an additional operator interface.
PLCs also do not have the ability to obtain data directly from water treatment sensors such as pH, ORP, conductivity, etc. This means that an additional meter or transmitter has to be installed between the PLC and the appropriate sensor. A discrete signal is often sent from a relay output on a meter to a discrete input on the PLC. Alternatively, an analog signal may be sent from the meter to an analog input on the PLC. Use of meters in addition to the PLC means additional expense, additional wiring, and additional programming since the meter will have to be programmed for alarm set points and alarm deadband. In summary, current PLCs are used primarily for control. They tend to be difficult if not impossible to use for calculating, manipulating, displaying or storing data. They cannot be used to obtain input directly from most water treatment sensors.
In conventional monitoring systems, it is common to have a number of separate meters monitoring the analytical parameters listed above. Each of these meters may then produce an analog output, which is recorded by some type of control device, such as a PLC. Many PLCs are designed having interchangeable input/output modules. These modules plug into a “rack” or a piece of hardware with multiple connections to some type of data bus, much like the ISA slots in a personal computer. However, in the case of analytical parameters such as pH, oxidation reduction potential (ORP), conductivity, dissolved oxygen, turbidity, corrosion rate, ion specific, etc., conventional systems monitor these parameters with separate discrete instruments. These instruments then send a signal, usually some type of analog signal, to a standard input module on the PLC. Presently available systems do not have input/output modules for analytical parameters available for standard PLCs.
With a conventional PLC, the monitoring and control system is configured by selecting the assorted meters necessary to monitor the parameters of interest. These are hardwired to the PLC and both the PLC and the meters have to be programmed. In the case of the present invention, configuration is done via software rather than hardwiring, and input/output modules are used to monitor and control analytical parameters as well as other parameters. The present invention also allows the user to log data as well as display data.
Patents which disclose devices designed to combine the different conductivity meters, pH meters, ORP meters, flow meters, etc. but unlike the present invention include U.S. Pat. No. 5,091,863, to Hungerford, et al., entitled Automatic Fluid Sampling and Flow Measuring Apparatus and Method, which discloses a device to monitor sewer flows and which is to be mounted inside a manhole. U.S. Pat. No. 5,172,332, to Hungerford, et al., entitled Automatic Fluid Sampling and Monitoring Apparatus and Method, is essentially the same device as that in U.S. Pat. No. 5,091,863 but includes broader program storage memory and data storage memory. U.S. Pat. No. 5,299,141, to Hungerford, et al., entitled Automatic Fluid Monitoring and Sampling Apparatus and Method, again discloses the same device as in the prior two patents but includes a photoelectric type sensor. U.S. Pat. No. 5,633,809, to Wissenbach, et al., entitled Multi-Function Flow Monitoring Apparatus with Area Velocity Sensor Capability, again discloses a similar device to the prior three patents but includes input/output points. However, these are fixed. Additional analog inputs and discrete outputs cannot be added. All of these devices are to be used in monitoring sewer pipes and are mounted in manholes, and their primary purpose is for flow measurement.
Unlike the aforementioned devices, the present invention is reprogrammable even after the unit has been installed. The present invention is designed to be programmed for each application, including logic control functions. It can be used for any type of fluid monitoring and control, not just wastewater. The aforementioned parameters can all be monitored directly from the sensor with the various input/output cards without any additional instrumentation. The input/output cards are interchangeable and selectable by the user and can be interfaced directly to the data bus from the various instruments. The applications for this type of input/output card configuration are endless. Analytical process parameters have not been directly monitored by devices in the prior art. Because it is compact and flexible, the present invention can be mounted on a control panel with standard bracketing. This unique apparatus can be used to monitor streams in industrial settings as well as in the field.
SUMMARY OF THE INVENTION (DISCLOSURE OF THE INVENTION)
The present invention is an integrated apparatus for monitoring and controlling fluid treatment having a central processing unit to manipulate and control data and at least one interchangeable input/output card for communication with sensor inputs and the central processing unit. The apparatus optionally has a keypad for the user to communicate directly with the central processing unit. Various interchangeable input/output cards are available for the fluid treatment apparatus. These cards include analog/pulse input cards, analog output cards, digital input/output cards, conductivity input cards, pH/ORP input cards, water treatment combination cards, temperature input cards, combination conductivity and resistivity input cards, pH input cards, ORP input cards, dissolved oxygen input cards, corrosion rate input cards, turbidity input cards, particle counting input cards, modem cards, printer interface cards, memory cards, and serial communication cards. The fluid treatment apparatus can have a data bus for communicating between the input/output cards and the central processing unit. A serial port is available for communicating with external devices. The fluid treatment apparatus is compact and integrated and can be mounted on a control panel.
The software upon which the CPU operates can perform a variety of calculations, including but not limited to calculating differential pressure, flow recovery, energy consumption, chemical usage, total operating time, total volume processed, salt rejection, temperature differential, heat loss, and normalized data. The software is also capable of setting alarms and logging alarm events. By using the software, the user can label inputs, establish ranges for inputs, establish

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid treatment apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid treatment apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid treatment apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3104074

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.