Fluid handling devices with diamond-like films

Chemical apparatus and process disinfecting – deodorizing – preser – Control element responsive to a sensed operating condition

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C422S091000, C428S216000

Reexamination Certificate

active

06749813

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to fluid handling devices, such as microfluidic articles, including surfaces with diamond-like films thereon.
BACKGROUND
Silica capillaries are used extensively in electrophoresis, gas chromatography, electrochromatography, microbore liquid chromatography, and other chemical analytical techniques. Optical detection methods such as UV absorbance and fluorescence are often used in electrophoresis, electrochromatography, and liquid chromatography. The optical properties of silica are generally ideal for these detection methods; however, the use of pure uncoated silica capillaries is not possible because the lack of a protective coating causes the capillaries to be extremely fragile. As such, uncoated silica capillaries frequently will break under normal handling conditions.
Because of this, a protective coating must be put on the capillaries during fabrication. Conventionally, a polyimide coating is used. This coating has excellent thermal properties and gives the capillary excellent strength so that it can be easily handled; however, it is opaque and highly fluorescent and thus it is necessary to remove this coating from the portion of the capillary that is in an optical detector. Removal is somewhat difficult and it renders that portion of the capillary very delicate and easily broken.
There has also been a drive towards reducing the size of instrumentation used for analyzing and otherwise manipulating fluid samples such as biological fluid samples. The reduced size offers several advantages, including the ability to analyze very small samples, increased analytical speed, the ability to use reduced amounts of reagents, and reduced overall cost.
Various devices for microfluidic applications have been proposed. These devices typically include a glass or silicon substrate having a lithographically patterned and etched surface provided with one or more structures forming a microfluidic handling architecture. Plastic substrates such as polyimides, polyesters, and polycarbonates have been proposed as well; however, such plastic materials typically do not wet well and lack an electroosmotic flow necessary for the flow of liquid through the microchannels of the microfluidic handling architecture.
SUMMARY
The present invention provides capillaries and other fluid handling devices, such as microfluidic articles, that include diamond-like films, preferably optically transmissive and/or hydrophilic diamond-like films. The articles of the present invention provide several advantages. For example, in the case of capillaries, optically transmissive diamond-like films do not necessarily have to be removed for detection. Hydrophilic diamond-like films provide good wetting and flow characteristics. For certain embodiments, particularly for certain microfluidic articles, the use of attachment chemistries that are used in conventional glass systems provide advantage.
The present invention provides a fluid handling device that includes a substrate and a diamond-like film (preferably one that is optically transparent and/or hydrophilic) disposed on at least a portion of the substrate. “Disposed” as used herein, means that the film is directly in contact with the substrate, bound or otherwise, or the film is in contact with one or more intervening layers, bound or otherwise. Herein, a film, rather than a coating, is disposed on a substrate. “Coating” as used herein, generally refers to a material that is first applied to a solid substrate in a liquid state, then solidified by UV radiation (photopolymerizable), heat (thermoset), or by removing solvent molecules from the coating solution.
Preferably, the fluid handling device is a capillary having an internal surface (which is typically a fluid handling surface) and an external surface (which is typically a nonfluid handling surface), wherein at least a portion of at least one of the internal or external surfaces has an optically transmissive diamond-like film disposed thereon. Preferably, the external surface of the capillary has an optically transmissive diamond-like film disposed on at least a portion thereof.
In another preferred embodiment, the fluid handling device can be a microfluidic article having microfluidic handling architecture including a fluid handling surface with an optically transmissive and/or hydrophilic diamond-like film disposed on at least a portion thereof. “Microfluidic handling architecture” includes, without limitation, open and closed or covered microchannels, reservoirs, sample handling regions and combinations thereof. The architecture may also, or alternatively, include a non-fluid handling surface having an optically transmissive and/or hydrophilic diamond-like film disposed on at least a portion thereof. Preferably, at least a portion of the fluid handling surface includes a hydrophilic diamond-like film disposed thereon.
In a preferred embodiment, a microfluidic article includes a fast polymeric substrate having a first major surface that includes a plurality of microfluidic handling architectures and a second major surface, wherein the article is in the form of a roll.
In another embodiment, the present invention provides a fluid handling device that includes a substrate and an optically transmissive and/or hydrophilic film including at least about 25 atomic percent carbon, from 0 to about 50 atomic percent silicon, and from 0 to about 50 atomic percent oxygen, on a hydrogen-free basis, disposed on at least a portion of the substrate. “Hydrogen-free basis” refers to the atomic composition of a material as established by a method such as Electron Spectroscopy for Chemical Analysis (ESCA), which does not detect hydrogen even if large amounts are present in the thin films.
In yet another embodiment, the present invention provides a fluid handling device that includes a substrate and a film including at least about 30 atomic percent carbon, at least about 25 atomic percent silicon, and less than about 45 atomic percent oxygen, on a hydrogen-free basis, disposed on at least a portion of the substrate. Preferably, the film is optically transparent, and more preferably hydrophilic.
In still another embodiment, a fluid handling device is provided that includes a microfluidic article that includes a microfluidic handling architecture including a non-fluid handling surface wherein at least a portion thereof has disposed thereon a diamond-like film that is optically transmissive, hydrophilic, or both.
The present invention provides a method of manufacturing a hydrophilic diamond-like film. The method includes treating a diamond-like film in an oxygen-containing plasma
Various other features and advantages of the present invention should become readily apparent with reference to the following detailed description, examples, claims and appended drawings.
Definitions
The present invention provides capillaries and microfluidic articles, as well as other fluid handling devices, and methods of manufacturing the same. For purposes of this invention, the following definitions shall have the meanings set forth.
“A” or “an” refers to one or more of the recited elements.
“Affix” shall include any mode of attaching reactants to a diamond-like film. Such modes shall include, without limitation, covalent and ionic bonding, adherence, such as with an adhesive, physical entrapment, and adsorption. This may or may not require the use of linking agents.
“Analyte” shall mean a molecule, compound, composition or complex, either naturally occurring or synthesized, to be detected or measured in or separated from a sample of interest. Analytes include, without limitation, proteins, peptides, fatty acids, nucleic acids, carbohydrates, hormones, steroids, lipids, vitamins, bacteria, viruses, pharmaceuticals, and metabolites.
“Diamond-like film” refers to substantially or completely amorphous films including carbon, and optionally including one or more additional components selected from the group of hydrogen, nitrogen, oxygen, fluorine, silicon, sulfur, titanium, and copper. Other elements may be present i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid handling devices with diamond-like films does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid handling devices with diamond-like films, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid handling devices with diamond-like films will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3364265

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.