Fluid filtration apparatus

Liquid purification or separation – Serially connected distinct treating with or without storage... – With by-pass

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S256000, C210S301000, C210S304000, C210S309000, C210S315000, C210S316000, C210S323200, C210S338000, C210S433100, C210S440000, C210S444000, C210S457000, C210S489000, C210S497010, C210S499000, C210SDIG009, C210SDIG009

Reexamination Certificate

active

06666968

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention generally relates to fluid filtration apparatus and, in a preferred embodiment thereof, more particularly relates to an oil filter assembly having uniquely integrated full flow and bypass flow portions.
In its broadest sense, a fluid is a substance (such as a liquid or a gas) capable of flowing within a defined system and/or conforming to the outline of a container in which it is stored. A system or other device within which one or more fluids flows along an expected fluid flow path may include a fluid filter. Within the system or device, the fluid filter is oftentimes positioned along the expected fluid flow path such that the fluid will flow through the filter. For example, fluid filters are used in various automotive vehicle engine applications to remove contaminants from fluids flowing within the engine, for example, the engine oil currently used to lubricate bearings and reduce friction in automotive vehicle engines. Of course, it should be clearly understood that there are a wide variety of other applications other than those specific applications set forth herein which may benefit from incorporation of one or more fluid filters along a fluid flow path thereof. Accordingly, it is contemplated that such applications may include (but are not necessarily limited to) vehicle engine applications other than those specifically recited herein, non-engine vehicle applications, for example, fuel delivery systems, and non vehicle engine applications, for example, turbine engine applications, as well as any other applications not specifically recited herein but characterized by a fluid flow within a defined area.
In the aforementioned automotive vehicle engine application, lubricating oil is circulated through the engine and carries contaminants such as metal particles, carbon particles and dirt which may cause harm to the engine. In order to effectively lubricate the engine, engine oil is passed through a filter to remove the contaminants before the oil is recirculated into the engine. The typical oil filter is attached to an internal combustion engine at an oil filter receptacle portion thereof. Engine oil passes through a discharge opening in the oil filter receptacle, into a fluid filter, and then into the engine lubrication system through an oil inlet pipe. A filter element in the fluid filter removes contaminants from the oil before it reenters the engine through the oil inlet pipe. Oil filters for gasoline and diesel engines have traditionally been of the “full flow” type in which engine-generated oil pressure is utilized to flow all of the oil discharged from the engine through a filtration element in the overall filter structure before returning the oil to the engine. While this full flow type of oil filter structure is widely used, and generally suited for its intended purpose, it is subject to a variety of well known problems, limitations and disadvantages. For example, this type of full flow filtration structure is normally suited for removal of relatively large size particulate matter—namely, particles of a 40 micron size and larger. Smaller contaminants, such as soot particles generated by diesel engines, simply pass through the filter element and are permitted to be returned to the engine. Another disadvantage of conventional full flow oil filters is that since all of the oil discharged from the engine is flowed through the filtration element, such element has a relatively limited duty cycle before it becomes clogged and must be replaced (if the filtration element is of a disposable type) or cleaned (if the filtration element is of a cleanable, reuseable type).
The useful life of a full flow filter assembly may be extended by increasing the effective area of its filtration element, such as by providing the element with a pleated configuration. However, this adds considerably to the cost of the element, makes it a great deal thicker, and substantially increases the difficulty in cleaning the element if it is of the reuseable type.
Another approach to extending the duty cycle of a full flow type filter assembly is illustrated and described in U.S. Pat. No. 5,569,373 to Smith et al. which is hereby incorporated by reference herein as if reproduced in its entirety. In the illustrated full flow type filter assembly therein, oil forced from the engine into an outer tubular canister portion of the filter assembly is directed through axially and circumferentially angled inlet openings disposed radially outwardly of a tubular full flow filtration element coaxially disposed within the canister. The angulated orientation of these inlet openings causes the oil discharged into the canister to swirl in a vortex pattern outwardly around the filtration element, with the result that particulate matter is forced outwardly away from the outer side surface of the filtration element.
Due to this vortex-created centrifuge action imparted to the incoming particulate-bearing oil, partially purified oil is forced through the filtration element and then returned via the interior of the element to the engine. Particulate matter forced outwardly toward the inner side surface of the canister, and thus prevented from flowing inwardly through the full flow filter element, falls by gravity into a lower contaminant chamber of the filter assembly.
While the duty cycle of the vortex-based full flow oil filter assembly illustrated and described in U.S. Pat. No. 5,569,373 is substantially increased compared to full flow oil filter assemblies of more traditional constructions, the filter assembly is still relatively ineffective in filtering out sub-40 micron size particles such as soot particles created in abundance by diesel engines. These small contaminant particles, for the most part, simply pass through the filter element and are returned to the engine.
One conventional method of solving this problem of being unable to effectively filter out small (i.e., sub-40 micron size) contaminant particles with a full flow filter is to augment the full flow filter with a filtration structure commonly referred to as a bypass filter structure. This bypass filter structure has a filtration element sized to trap the small contaminant particles that the full flow filtration assembly cannot separate from the oil, and is connected in parallel with the full flow assembly. The bypass filter structure is mounted remote from the full flow filtration structure and is connected thereto by appropriate hoses. Oil discharged from the engine during operation thereof is routed separately to the full flow and bypass flow filtration structures, with only a small portion of the discharged oil (i.e., less than ten percent in most cases) being flowed through the bypass filtration structure. In this manner, large and small contaminant particulates are separately handled.
As conventionally practiced, this dual filtration structure approach has a variety of problems, limitations and disadvantages. For example, it substantially adds to the cost and complexity of the overall filtration system and makes it more difficult and time consuming to maintain. Additionally, the necessity of using hoses connected to the filtration apparatus substantially increases the possibility that leaks will develop in the system due to, for example, vibration stresses being imposed for long periods on the hoses and their fittings. Furthermore, since two separate filtration systems must be employed under this scheme, more space must be dedicated to the filtration system.
From the foregoing it can readily be seen that a need exists for fluid filtration apparatus that provides the benefits of both full flow and bypass flow types of filtration structures while at the same time eliminating or at least substantially reducing the above-mentioned problems, limitations and disadvantages commonly associated with auxiliary bypass flow filtration structures. It is to this need that the present invention is primarily directed.
SUMMARY OF THE INVENTION
In carrying out principles of the present invention, in accordance with a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid filtration apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid filtration apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid filtration apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3158118

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.