Fluid exchange system for controlled and localized...

Surgery – Means for introducing or removing material from body for... – Material introduced into and removed from body through...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C604S043000, C604S121000, C604S246000

Reexamination Certificate

active

06827701

ABSTRACT:

FIELD OF THE INVENTION
The devices and related methods of the invention relate to the controlled introduction and removal of fluids in diagnostic, therapeutic and imaging applications within the body. Specifically, the invention relates to the advantageous use of a fluid exchange device in combination with a catheter to produce a system for controlled aspiration and irrigation and the selective and localized exchange of fluids within a body conduit, for example, in the diseased region of a blood vessel having a blockage or lesion. The devices of the invention, and the methods enabled by the use of the devices, have several different components that can be used individually or integrated into a system for use within an organ and within the vasculature of the body where controlled and localized irrigation and aspiration are performed together as a therapeutic procedure or in tandem with a separate therapeutic procedure.
BACKGROUND OF THE INVENTION
Irrigation and aspiration are clinically important in many surgical procedures when fluids are selectively introduced into and removed from a target site within the body, usually while a surgery or other therapeutic medical procedure is performed. When the site of the therapeutic treatment is inside a body cavity or in the vasculature of the body, such as in a blood vessel, the irrigation and aspiration functions require special apparatus and methods. Surgical and percutaneous systems that both irrigate and aspirate have been developed, and some of these systems are catheter-based such that the introduction and removal of fluids is performed within an organ or a vessel by using the catheter as the conduit to introduce and remove fluids from a target site. As will be readily appreciated, the catheter allows the control elements to be remotely located, e.g., outside the body while the actual irrigation and aspiration functions are selectively provided within the body by selectively orienting the distal end of the catheter to the target site. In such cases, as is the case in open surgeries, the irrigation and aspiration functions accompany a therapeutic procedure that is performed at the target site along with the irrigation and aspiration.
Catheter-based irrigation and aspiration systems are unique in many respects due to their use in clinical situations where blockages or lesions exist inside a blood vessel, such as a coronary or carotid artery, and dangers arise from the creation and release of emboli within the vessel. In many intravessel therapeutic procedures, the danger from the creation of emboli is an unavoidable aspect of the therapeutic procedure. For example, lesions of atherosclerotic plaques inside a blood vessel are treated by several therapeutic procedures including endarterectomy, atherectomy, the placement of intravessel stents, balloon angioplasty, surgical ablation of the lesion, thrombectomy, OCT, dialysis shunt clearing and others. However, while each of these procedures has great therapeutic value in treating the lesion, each carries the risk of creating emboli during the procedure. As with any procedure conducted in the cardiovascular system, the risk is particularly great where plaque dislodged from inside a blood vessel can travel to the brain causing serious brain injury or death. For example, treating lesions of the carotids necessarily involve high risk. Currently, carotid treatments are attempted together with deployment of a filter to attempt to track emboli generated by or released from a carotid lesion. Unfortunately, crossing a carotid lesion with a filter or other structure can generate a cerebral ischemia or stroke. Schlueter et al. 2001, Circulation 104 (17) II-368. Moreover, studies have shown that merely crossing a carotid lesion with a guide wire can generate emboli. Al-Mubarak et al.: Circulation 2001 OCT 23:104 (17): 1999-2002. Also, some lesions carry such a high risk of generating emboli that therapeutic treatments are attempted only in the most severe cases. Where a chronic total occlusion exists, the diagnosis is particularly poor because it is impossible to place a structure distal of the occlusion such that emboli generated by the removal of the occlusion can be captured before circulating in the bloodstream. Such occlusions can only be treated by removing the occlusion from the proximal side, where emboli removal is uniquely difficult. Accordingly, if the capability existed to dramatically reduce the dangers of emboli creation during therapeutic procedures inside a vessel or organ of the body, the existing procedures would be safer and more widely practiced, and new procedures would be performed.
A variety of systems to contain and remove emboli have been proposed wherein a portion of a vessel that contains a lesion is segregated by two occluding members, typically two balloons, which are inflated proximate and distal to the lesion to effectively seal the inside of a region of the vessel containing a lesion prior to treatment of the lesion. Once treatment is complete, embolic particles such as dislodged plaque are removed by applying suction between the balloons. However, the tissue affected by a lesion is notoriously delicate and the treatment of the lesion has the capability to generate or release emboli whenever any mechanical manipulation of the lesion occurs. The generation and/or release of emboli is a concern virtually anytime a structure is passed through a susceptible vessel. Such circumstances include the placement of a balloon or stent, the placement of a filter, or simply the use of a catheter or guide wire for imaging, diagnostic, or any other procedure. In many procedures, the internal portion of a vessel is occluded to provide a segregated region of a vessel through which fluid does not flow. Moreover, virtually anytime structures are inserted into the vessel, the generation of release of emboli is a concern. For example, in the common practice of placing a stent inside an artery, a filter may be placed distally of the stent to attempt to collect emboli generated when the stent is expanded to engage plaques or lesions inside the vessel. All devices placed distal involve the crossing of the lesion. All crossings of lesions create emboli of some quantity and significance. Such systems cannot protect the patient against the potential harm inherent in the placing the device. Additionally, once the stent is in place, the filter must be removed by pulling it through the portion of the vessel in which the stent has been inserted. This carries the risk that the filter will impact the vessel and cause the release of emboli and/or contact the stent and either displace the stent or similarly cause the release of embolic particles. The use of occluding members of any type has certain drawbacks. Anytime a structure is used as an occlusive member inside a vessel, the structure must deform the vessel from the inside to create a seal about the periphery thereof with the internal surface of the vessel. For example, to make the seal tight enough to prevent the passage of fluid and emboli past the balloon, the expansion of the balloon typically deforms the vessel outward and may disrupt plaque in and about the point of contact between the vessel and the balloon. Moreover, any plaque that becomes dislodged outside the barrier formed by the balloon is released into the blood stream because there is no mechanism distal of the balloon to remove the emboli. For this reason, irrigation and aspiration proximate to the lesion are particularly important.
To create a segregated region of a vessel, a two-balloon system may be used. However, certain disadvantages of a two-balloon system also arise from the placement of balloons on both sides of a lesion and the nature of the blood flow that occurs in the region of the vessel containing the lesion once the balloon is removed. At the point of contact between the balloon and the vessel, plaque may be compressed underneath the balloon and may become dislodged upon reestablishment of flow through the vessel. Furthermore, many clinicians have observed that the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid exchange system for controlled and localized... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid exchange system for controlled and localized..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid exchange system for controlled and localized... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3318594

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.