Rotary kinetic fluid motors or pumps – Working fluid passage or distributing means associated with... – Nozzle discharging onto motor runner
Reexamination Certificate
2002-01-15
2003-07-08
Look, Edward K. (Department: 3745)
Rotary kinetic fluid motors or pumps
Working fluid passage or distributing means associated with...
Nozzle discharging onto motor runner
Reexamination Certificate
active
06589014
ABSTRACT:
BACKGROUND OF THE INVENTION
This version of the invention is concerned with the field of fluid-driven engine devices or turbines. More specifically, this version of the invention is concerned with turbines that are actuated with an incoming stream of pressurized fluid, which rotates an inner cylinder and shaft, which drives a secondary device, such as a generator for production of electric power or the like.
Fluid-driven devices or engines are commonly referred to as turbines, whereby the kinetic energy of a moving fluid is converted to mechanical power by the impulse, movement, or reaction of the fluid with a series of blades, impellers, or paddles arrayed about the circumference of a rotor, wheel or cylinder. Conversion of kinetic energy to mechanical energy occurs on the blades, and the method by which such conversion is accomplished distinguishes whether a turbine is an impulse or a reaction turbine. An impulse turbine, for example, is comprised essentially of an airtight case or stator, at least one rotor with a series of curved blades, said blades extending radially from the edge thereof, and a shaft onto which the rotor is affixed, said shaft disposed in rotating engagement within and supported by the stator. The rotation of the shaft with respect to the stator is assisted by a set of bearings, which are disposed between communicating sections of the shaft and stator. A series of nozzles is located within the interior of the stator around the blades with the tips of said nozzles positioned adjacent to the blades of the rotor. The nozzles direct incoming pressurized fluid to the blades, and the fluid's making contact with or impinging upon said blades rotates the blades, the rotor, and ultimately the shaft. The shaft is usually connected to a secondary device, such as a generator for production of electric power or a pump.
A reaction turbine is comprised of an airtight case or stator and at least one rotor with blades, said blades extending radially from the edge of the rotor. The rotor is affixed to a shaft, which is disposed in rotating engagement within and supported by a stator. The blades extending from the rotor are usually referred to as moving blades, and the space enclosed between any two blades and an intervening portion of the edge of the rotor resembles that of a nozzle. A series of fixed or stationary blades is located on the interior surface of the sidewall of the stator and when viewed in cross section is similar to the moving blades extending from the rotor, i.e. the space enclosed by any two fixed blades resembles that of a nozzle. Furthermore, when fluid is delivered into the stator and passed through spaces between the fixed blades, the fixed blades function as nozzles by directing the fluid to the moving blades. The moving blades respond by rotating primarily as a result of the reactive force of the fluid acting upon them, said reactive force produced by the velocity of the fluid and that when said fluid changes direction, and to a lesser extent the impulse of the fluid impinging upon or pushing the moving blades.
In some designs a turbine can be provided with a combination of impulse and reaction blades and technologies so that such a turbine can function as an impulse-reaction turbine, i.e. the rotor and blades attached thereon are rotated by the impulse movement of a of a fluid entering the stator and the reactive force of a fluid changing direction.
Over time, though, such turbines have become increasingly complex and specialized, which compromises their reliability and restricts their application to certain uses. The fluid-driven turbine that is the subject of this disclosure introduces a reaction turbine that incorporates a simplified design and is constructed with a minimum number of components in order to ensure reliability and promote adaptability to a variety of uses. The present version of the invention is distinguished over conventional turbine design and the prior art by employing an outer cylinder or stator having a continuous, curving sidewall and two opposed circular end walls, each wall having an aperture formed centrally therein. An inner cylinder with a shaft located on opposing end walls thereof is disposed within the outer cylinder with the unattached ends of the shaft extending through the apertures of the outer cylinder. Two impellers are located on opposing sides of the exterior of the inner cylinder and are disposed in parallel relation to the longitudinal axis of said inner cylinder. Each impeller is formed with a concave surface and an opposed convex surface. A leading edge of the impeller located distally from the exterior of the sidewall makes slight contact with the interior surface of the outer cylinder. A fluid supply pipe is affixed to the outer cylinder, said supply pipe consisting of an inlet pipe, diverging pipe, two side pipes with a series of inlet pipes extending therefrom. The inlet pipes communicate with inlet ports located within the sidewall of the outer cylinder. The number of inlet pipes on a first side pipe is unequal to that of the number of inlet pipes on a second side pipe. An outlet pipe is attached to the exterior of the outer cylinder and communicates with an outlet port formed into the sidewall of the outer cylinder. Incompressible liquid flows under slight pressure through the fluid supply pipe and is delivered into the interior of the outer cylinder through the inlet pipes and cooperating inlet ports of the outer cylinder. As the number of inlet pipes on each side of the outer cylinder is not equal, fluid is thus delivered into the outer cylinder at differing velocity and static pressure on each side thereof, thereby resulting in an imbalance of force acting upon the impellers, which functions to trigger and sustain rotation of the inner cylinder. Liquid that has expended kinetic energy is exhausted through the outlet port and pipe and replaced with an identical amount of liquid from the fluid supply pipe.
SUMMARY OF THE INVENTION
The present version of the invention, which will be described in greater detail hereinafter, relates to the field of fluid-driven engine devices or turbines. More specifically, this version of the invention is concerned with turbines that are actuated with an incoming stream of pressurized fluid, which rotates an inner cylinder and shaft, which drives a secondary device, such as a generator for production of electric power or the like. My version of the invention overcomes all of the shortcomings listed previously, in addition to novel aspects that will be described in detail hereinafter.
Described briefly, according to a typical embodiment, the invention presents a fluid-driven engine device that operates as a fluid-driven turbine by converting the kinetic energy of a pressurized fluid into mechanical work or power for use by a secondary device, such as an electric generator. The device is comprised of an outer cylinder, fluid supply pipe, and inner cylinder with integral shaft. The outer cylinder is comprised of a sidewall and two end walls with an aperture formed within the center of each end wall. A series of apertures or ports is located in the sidewall of the outer cylinder, said ports disposed within two laterally opposed rows with a first row of said ports having at least one more port than a second row of ports. Additionally, an exhaust port is fabricated into the sidewall adjacent to one of the intake ports. An outlet pipe is affixed to the outer cylinder over the exhaust port.
The fluid supply pipe consists of a common inlet pipe, diverting pipe, and two side pipes. The side pipes are attached to the exterior of the outer cylinder by inlet pipes, which extend from the side pipes for some distance and are attached to the exterior of the outer cylinder over cooperating ports. The fluid supply pipe delivers pressurized fluid to opposing sides within the interior of the outer cylinder.
The inner cylinder is comprised of a continuous curving sidewall and two circular end walls located at opposing ends of the sidewall. The shaft, extending from the end walls o
Hawryluk Alexandra
Hawryluk John
Hawryluk John Michael
Look Edward K.
McAleenan James M
LandOfFree
Fluid-driven turbine does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fluid-driven turbine, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid-driven turbine will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3082411