Fluid dispensing system having independently operated pumps

Liquid purification or separation – Processes – Separating

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C210S416100, C222S001000, C222S214000, C222S255000, C417S053000, C417S244000, C417S383000, C417S472000

Reexamination Certificate

active

06251293

ABSTRACT:

BACKGROUND OF THE INVENTION
This invention relates to a pumping system useful in dispensing fluids, especially those which are expensive, viscous, high purity, and/or sensitive to molecular shear.
The invention has numerous applications, but is especially useful in the microelectronics industry. The trend in that industry is to squeeze greater quantities of circuitry onto smaller substrates. Circuit geometries have been shrunk to less than one micron. In that microscopic world, the slightest particle of contamination can create a defect, decreasing production yields, degrading device performance, and reducing device reliability.
For this and other reasons, modern manufacturing techniques in the microelectronics and other industries sometimes involve decontaminated “cleanroom” environments. Many of these techniques also use advanced process chemicals, some of which are very expensive. For example, certain chemicals used to process semiconductors can cost $15,000 or more per gallon, and the semiconductor substrates can be worth $20,000 or more at that stage of processing. To be useful in cleanroom environments and applications, however, the chemicals must be filtered. Because of the viscosities and sensitivities of the fluids, they must be filtered at low flow rates and under low pressure to minimize molecular shear on the fluids. Prior art devices do not meet these parameters in certain production-line operations.
For example, some operations require a periodic, non-continuous “shot” of fluid. Such “shots” sometimes consume only a small part of the pump's cycle time, leaving the pump and/or filter idle during the remainder of the cycle. During that relatively brief moment when a shot occurs, high pressure must be used to achieve a flow rate sufficient to dispense an appropriate amount of fluid. As noted above, such high pressures and flow rates can damage sensitive fluids.
In addition, low pressure filtration is generally recognized as the best way to effectively eliminate gel slugs in, and remove contaminants from, a subject fluid. If high pressure is used to achieve a desired flow rate through a filter, contaminants can be forced through the filter, rather than retained therein.
Furthermore, many operations, especially in the semiconductor industry, apply only small amounts of fluid to each unit processed. In these applications, there is an increased need for precise control over the dispense.
Additionally, the reservoir of subject fluid needs to be easily monitored, replaced, and/or replenished. These dispense systems also need to be easily primed with and purged of subject fluid, to allow the system to be used on more than one fluid, and to reduce fluid shear.
At the present time there is no system that satisfactorily meets these various requirements. In fact, in some research laboratories, these expensive fluids are still being dispensed by hand; that is, lab technicians or scientists pour the fluids directly out of storage containers. This hand pouring has poor repeatability, involves significant operator technique, does not allow point-of use filtration, and generally causes a tremendous, expensive waste of time and materials. Production and laboratory costs could be greatly reduced by automating the dispense of these fluids.
Numerous other problems exist with prior art dispense systems. In certain operations where relatively high pressure is acceptable and desired to achieve a necessary flow rate, such as through a filter which is still useful even though partially clogged, prior art systems cannot deliver, or are inaccurate when delivering, the required pressure. The systems have poor predictability and repeatability of results. Their complicated flowpaths are difficult to purge, and excessive fluid hold-up volumes lead to fluid waste.
Prior art systems also waste fluid during dispensing and provide little, if any, in the way of “suck-back” adjustment. Suck-back is an adjustment made at the outlet port of a given dispense system, in which the fluid is drawn back slightly inside the port. This adjustment reduces fluid solvent evaporation at the outlet during idle periods, reduces fluid contamination at the outlet, and most importantly allows for a sharp and dripless cessation of dispense, avoiding waste of the processed fluid.
Additionally, prior art systems are not easily automated, their fluid reservoir levels cannot be easily monitored, and they are limited in the range of fluid viscosities which they can dispense. Finally, complex mechanisms downstream of the filter often generate fluid contaminants.
For example, certain prior art systems utilize diaphragm-type pumps which the diaphragm is actuated by air pressure. Typically, the actuating air is more compressible than the liquids being pumped. As air pressure is increased in an attempt to displace the diaphragm and dispense fluid, the actuating air is compressed, in effect “absorbing” part of the intended displacement of the diaphragm. This air compression prevents accurate control and monitoring of the position of the diaphragm and, correspondingly, prevents accurate control and monitoring of the volume and rate of fluid dispensed.
The problem is exacerbated if the fluid is being pumped through a filter. By its nature, the filter becomes clogged during use. As it becomes clogged, higher pressure is required to achieve a given flow rate through the filter. Because the air pressure actuating the diaphragm typically remains relatively constant throughout the life of the filter, however, fluid flow rate through the filter decreases as the filter becomes more clogged, making it even more difficult to achieve repeatable, accurate dispense.
OBJECTS AND ADVANTAGES OF THE INVENTION
It is, therefore, an object of our invention to provide a fluid dispensing system which can accurately and repeatedly dispense without contaminating a subject fluid.
Another object of our invention is to provide a fluid dispensing system which can be utilized in filtering viscous and other fluids under relatively low pressure, decreasing molecular shear on the fluids. A preferred embodiment of the invention allows the fluid to be filtered continuously (and thus at a relatively low pressure and flow rate) with one pump, while being dispensed non-continuously with a second pump.
It should be understood that, while the invention is described herein in connection with dispense of high-purity, viscous fluids, the invention may be utilized in many other applications. Moreover, although the preferred embodiment discussed herein includes two pumping means with filter means interposed therebetween, advantageous aspects of the invention may be practiced with no filter means, or with only one pumping means with or without filter means.
Another object of our invention is the provision a dispensing system permitting the use of computer or other automated control for the rate and interval of dispense, as well as for the direction of fluid flow through the system and fluid pressure during operation of the system.
Still another object of our invention is the provision of a dispensing system which permits great flexibility of operation, making it adaptable to numerous applications.
An additional object of our invention is to provide a pumping system which can be easily purged of a processed fluid.
Yet another object of our invention is to provide a fluid filtering system with no contamination-generating components downstream from the filter.
Still another object of our invention is to provide a pumping system which can dispense fluids at controlled flow rates without being affected by the condition of a filter within the system, even if relatively high pressure is required to achieve the flow rates.
An additional object of our invention is to provide a pumping system which can accurately provide and control suck-back of process fluid, and can be primed and/or recharged with minimal waste, stress, shear or introduction of gasses into the process fluid.
Another object of our invention is to provide a pumping system in which the fluid input reservoir may be r

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid dispensing system having independently operated pumps does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid dispensing system having independently operated pumps, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid dispensing system having independently operated pumps will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2507763

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.