Fluid data monitoring and control system

Automatic temperature and humidity regulation – Mixing fluid of dissimilar temperature – Mixing valve with temperature motive means

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C004S623000, C236S094000, C251S129040

Reexamination Certificate

active

06481634

ABSTRACT:

FIELD OF THE INVENTION
A fluid data monitoring and control system useful in monitoring fluid properties and controlling the flow of that fluid from a faucet is described. The system includes a fluid property sensor/transmitter attached to a faucet which communicates via a wireless link to a controller. The wireless link is utilized to facilitate installation on a faucet. Various embodiments of the system include a system having a user detector for touchless control of the flow of water from a faucet, a digital display with audio and/or visual alarms to indicate if pre-set fluid conditions have been realized, a control valve to moderate flow of water to the faucet and a design to provide the incorporation of multiple sensors into the system.
BACKGROUND OF THE INVENTION
With increasing concerns with respect to environmental hazards, consumers are seeking products which reduce the risk to their health and to the health of their families. As a particular example, people are increasingly concerned about the quality of water which flows from their taps with respect to the clarity, pH, bacterial content, mineral content, and other parameters in addition to safety concerns with respect to the risk of scalding by hot water.
In response to these concerns, numerous water treatment systems and anti-scald systems have become available on the market which are connected to water supply systems to either prevent scalding or clean the water prior to consumption. Water treatment systems may include filter systems, water softeners or other known devices. Generally, however, these systems do not indicate whether the water being delivered from the faucet after passing through a treatment system is actually of a satisfactory quality as the water is not actually tested for its quality prior to leaving the faucet. Furthermore, in the event that water quality is not sufficient there have not been systems which would interrupt the flow of water in order to prevent exposure of the user to unsatisfactory water.
With respect to scalding, the risk of scalding through the use of hot water faucets by certain groups of people, particularly disabled, elderly or young children, in many homes or institutions is particularly prevalent. Often, these people mistake the hot and cold water taps on a faucet or have difficulty operating a faucet which leads to exposure to dangerously hot water from the faucet. Typically, water temperatures in excess of 42° C. can cause injury to unprotected skin. While in various hot water heaters it is possible to set the thermostat to a lower temperature, many hot water tanks have their thermostats set in excess of 60° C. in order to ensure adequate hot water supply to the system for tasks such as laundry or running a dishwasher where a higher water temperature is desired. Higher temperature water also reduces the potential for bacterial contamination of the water.
Accordingly, there has been a need for products which effectively monitor the physical properties of water flowing from a faucet and, if necessary, control the flow of water from the faucet as well as monitoring and controlling the flow of water from a faucet. For example, there has been a need to ensure that potentially scalding temperatures are not exceeded by individual faucets in a hot water system.
Past temperature monitoring and shut-off systems exist for controlling the flow of water or a fluid through conduits. Systems also exist with respect to faucets which regulate and control the flow of water to a faucet. These systems often include mechanisms for electronically monitoring the water temperature and adjusting the flow of hot and cold water to control a selected temperature. One disadvantage of these systems is that they are often highly complex requiring complete replacement of an entire faucet to enable their installation. This complexity often leads to an increased cost to the consumer from both the capital cost of the product as well as the labor required to install the product.
Furthermore, these past systems may detract from the aesthetic look of a particular faucet by requiring unsightly attachments to the faucet or, alternatively, requiring the complete replacement of a faucet with a design which does not complement the overall style or look to a bathroom or kitchen. For example, in those systems which do not require replacement of the existing faucet, the installation often detracts from the aesthetic appearance of the faucet either through visible wires, piping, valves and/or complex control panels.
Accordingly, there has been a need for a fluid monitoring system which may be installed on to existing faucets without detracting from the aesthetic look of the faucet, specifically without the use of unsightly wires or valve mechanisms. Furthermore, there has been a need for a fluid monitoring system which can be readily installed by either a plumber or a lay person with minimal plumbing experience.
Specifically, there has been a need for a system which monitors any number of physical properties of water flowing from a faucet and communicates the fluid property information to a controller for processing through a wireless communication link. Information received from the controller may be used for providing a digital display of physical properties, providing audio or visual alarms and/or for controlling a valve system in the event that certain physical parameters of the water do not meet a pre-set quality standard.
Still further, with respect to the wireless transmission of fluid property data, there has been a need to improve the efficiency of power consumption relating to the transmission of data and, specifically, a need for a system which transmits temperature data only if a user is present.
While systems exist which allow for touchless control of a faucet, few systems allow a user to control the temperature of the water. As a further disadvantage, some of these systems pressurize a faucet at the aerator causing stress in the spout and faucet outside of its engineered specifications which may lead to premature failure of the faucet.
Accordingly, there has been a need for a fluid monitoring device having increased power consumption efficiency through the provision of a user detector enabling non-continuous data transmission. Additionally, there has been a need for a fluid monitoring device that has the feature of touchless, retro-fittable flow control which also eliminates pressurizing the spout and faucet.
In addition to the above, there are certain installations wherein it becomes desirable that the integrity of the wireless data linkage is monitored between the faucet unit and the valve/processor/display system. Accordingly, there has also been a need wherein a transceiver is provided at both the spout unit and the valve/processor/display system in order to provide two-way communication between the faucet unit and valve/processor/display system.
It is also desirable that a fluid monitoring system is provided with modules which allow for the system to be expanded readily wherein different fluid property sensors may be readily incorporated into the system thereby allowing readily the custom design of a specific system for different applications. Such a system reduces the capital cost involved with the development of custom systems.
A review of the prior art indicates that systems exist which provide water temperature monitoring, control and shut-off in the event of excess temperatures. These include devices disclosed in U.S. Pat. No. 4,256,258, U.S. Pat. No. 5,184,642, U.S. Pat. No. 4,756,030, U.S. Pat. No. 4,886,207 and U.S. Pat. No. 5,226,629. However, none of these patents disclose a device which addresses and solves the above problems, nor do they specifically disclose a wireless device which can be readily retrofitted to existing faucets.
SUMMARY OF THE INVENTION
In a first embodiment of the invention, there is provided a faucet control system comprising:
a spout unit (SU) for obtaining data from a faucet, processing that data and wirelessly transmitting a signal relating to that data; and,
a flo

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid data monitoring and control system does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid data monitoring and control system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid data monitoring and control system will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2955058

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.