Fluid-cooled power transistor arrangement

Active solid-state devices (e.g. – transistors – solid-state diode – Housing or package – With provision for cooling the housing or its contents

Patent

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

257721, 257723, H01L 2334

Patent

active

056062010

DESCRIPTION:

BRIEF SUMMARY
BACKGROUND OF THE INVENTION

1. Field of the Invention
The invention relates generally to the field of fluid cooling of semiconductor components and in particular to a fluid-cooled power transistor arrangement.
2. Description of the Prior Art
In order to control electric devices and machines, semiconductor valves are used in great numbers. The type of valve to be used is determined, first of all, by the quantity of power to be controlled and, secondly, by the maximum operating frequency. Thyristors and triacs are used at network frequencies, i.e., on the order of 50 Hz, and permit power control to on the order of 10 megawatts. In many application cases, however, especially in the control of electric machines, higher switching frequencies up to nearly the megahertz range are required. For applications of this type, power transistors are used. In the frequency range around 10 kHz at powers on the order of between 10 and 100 kW, BIMOS power transistors and IGBT (Insulated Gate Bipolar Transistor) power transistors are used. Moving toward higher frequencies, but at lower powers, MOSFET power transistors are normally used.
Power semiconductor components must be cooled. In the active region of the semiconductor component, temperatures should not rise above relatively low temperature values. The waste heat passing through not only the semiconductor substrate, but also the electrode platings and the multi-layer supporting plates on which the semiconductor substrate is located must be eliminated. In power transistors of the type discussed above, the semiconductor substrate has, on at least one of its sides, a base metal plating which overlaps in planar fashion the entire active region of the substrate and, depending on the type, forms the collector or the drain electrode. The other electrodes of the transistor, i.e., the base electrode and emitter or the gate or source electrode, are accessible on the opposite flat side of the semiconductor substrate. In conventional power transistors, a fluid-cooled heat sink arrangement is attached to the flat base metal plating and dissipates the waste heat of the active region of the transistor through the semiconductor substrate and the base metal plating. Because the temperature in the active region must be maintained uniformly within the given limit values, it is vital that the heat sink arrangement be attached to the semiconductor substrate of the semiconductor element flatly and with uniform heat exchange characteristics. As a rule, a direct connection of the heat sink to the semiconductor substrate is not possible in view of the high voltages (1000 V and more) and high currents (e.g. 100 amperes), which means that the semiconductor substrate must be arranged on an insulating substrate via which, in previous power transistor arrangements, the waste heat has had to be dissipated from the semiconductor component into the cooling arrangement. It is therefore common to place the semiconductor component on a ceramic board which has copper plating on both sides and to solder the ceramic board by its side away from the semiconductor component onto a supporting plate of for example, steel. In turn, the steel plate is placed with an intermediate layer of a heat conducting paste onto the, for example, water-cooled cooling element. Suitable heat sink arrangements are known, for example, from EP-A-447 835. However, it has been shown that the switching capacity of power transistors often cannot be fully utilized or that malfunctions of power transistors occur if inhomogeneities, which can lead to local overheating of the semiconductor component and thus to the destruction of the transistor, remain in the solder layer connecting the ceramic board to the steel plate or in the heat conducting paste layer.
In order to improve the cooling effectiveness of power transistors, a method is known of providing the supply bands attached to the side away from the substrate with heat sinks, which strengthen the cooling of the active region of the semiconductor component (EP-A-252 429 and EP-A-449 43

REFERENCES:
patent: 4296455 (1981-10-01), Leaycraft et al.
patent: 5077601 (1991-12-01), Hatada et al.
patent: 5262921 (1993-11-01), Lamars

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid-cooled power transistor arrangement does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid-cooled power transistor arrangement, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid-cooled power transistor arrangement will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-1976057

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.