Surgery – Means for introducing or removing material from body for... – Treating material introduced into or removed from body...
Reexamination Certificate
2001-04-03
2002-10-29
Ganey, Steven J. (Department: 3752)
Surgery
Means for introducing or removing material from body for...
Treating material introduced into or removed from body...
C604S110000, C604S187000, C604S263000
Reexamination Certificate
active
06471677
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates to a novel fluid collection device, more particularly, to a fluid collection device having a shield that covers a vacuum needle and protects the user of the device when the needle is not in use.
2. Discussion of the Related Art
A variety of different fluid collection devices, particularly blood collection devices, are used in healthcare facilities such as hospitals and clinics. Each device typically utilizes a vacuum needle protruding from a receptacle for drawing fluid from a source, such as a patient's body, into a vial disposed within the receptacle. A primary concern associated with these devices is protecting the user and others from an accidental strike by the protruding needle when the device is not being used.
To alleviate such concern, many fluid collection devices provide a shield that surrounds the needle when the device is not in use. The shield is further designed in many of these devices to telescopically receive the receptacle to which the needle is attached. For example, U.S. Pat. No. 5,328,473 (Fayngold et al.) discloses a disposable needle holder assembly including an outer sleeve that telescopically receives a needle holder with a needle assembly attached thereto. The needle assembly is attached at the distal end of the needle holder and extends from the distal end of the sleeve during use of the device. The needle holder includes a pair of ramps on its outer surface near its distal end with a groove positioned therebetween. The sleeve includes a segmented annular projection on its interior surface near its proximal end for receiving and holding the ramps on the needle holder. After using the needle holder assembly, the needle is retracted and permanently locked within the sleeve by telescopically moving the needle holder distal end toward the sleeve proximal end until the segmented annular projection on the sleeve locks within the groove located between the ramps on the needle holder. The Fayngold et al. device is limited in that the needle holder assembly is rendered inoperable after shielding the needle within the sleeve, because the needle holder becomes permanently locked within the sleeve upon engagement of the sleeve segmented annular projection with the groove located between the needle holder ramps.
In U.S. Pat. Reissue No. 33,585 (Haber et al.), a shielded safety syringe is disclosed including a syringe cylinder telescopically received within an outer sleeve. A needle is attached to the cylinder distal end and protrudes from the sleeve distal end when the cylinder is completely received within the sleeve. The safety syringe further includes locking members attached to and extending from the outer surface of the sleeve. The locking members are connected to the sleeve via a living hinge assembly at the sleeve proximal end. Each locking member includes a leg that extends into the interior of the sleeve so as to releasably engage with two sets of grooves defined along the outer periphery of the cylinder at its proximal and distal ends. During operation, the needle may protrude from the sleeve distal end while the cylinder is locked within the sleeve by engagement of the legs of the locking members with the proximal groove on the cylinder. After using the syringe, the needle may be retracted within the sleeve upon pivoting the locking members such that the locking member legs disengage with the cylinder proximal groove. The cylinder and needle may further be releasably locked within the sleeve by drawing the cylinder distal end toward the sleeve proximal end until the locking member legs engage with the cylinder distal groove. Although the safety syringe of Haber et al. provides a releasable locking feature allowing the syringe to be repeatedly shielded, the living hinge assembly and corresponding locking members on the sleeve render the safety syringe difficult to manufacture and not easy for mass production. Additional raw material is also required to manufacture the sleeve of Haber et al., in comparison to typical syringe sleeves, due to the locking members that are formed and extend from the sleeve.
In U.S. Pat. No. 5,437,639 (Malenchek), a needle protective sheath device is disclosed including an inner cylindrical member having a pair of opposing axially extending tapered slots extending toward its proximal end and a needle secured to its distal end. The inner member is telescopically received within an outer cylindrical member and has temporary locking projections extending from its sides near its proximal end that engage with locking holes at the proximal end of the outer member. During engagement of the locking projections within the locking holes, the needle extends through the distal end of the outer member. Squeezing the member sides of the inner member proximal end together results in the temporary locking projections disengaging from the locking holes to allow the inner member distal end to be drawn towards the outer member proximal end thus retracting the needle within the outer member. Other projections and locking ramps are on the inner member at its distal end for engaging the locking holes on the outer member. Guide channels in the interior wall of the outer member engage the inner member distal projections and ramps to guide those elements as the inner member and needle are axially displaced with respect to the outer member. The sheath device of Malenchek, while providing a temporary locking feature when the needle extends from the outer member, fails to provide a temporary locking feature when the needle is retracted and the inner member distal projections engage the outer member locking holes. Additionally, the sheath device of Malenchek is expensive to manufacture and requires a substantial deformation of the inner member distal end to disengage the locking projections from the locking holes prior to retracting the needle into the outer member.
Accordingly, there exists a need to provide a fluid collection device with a protective shield that is relatively inexpensive to manufacture, that is safe and easy to use and that provides an easy releasable locking arrangement for both a needle exposure or “use” mode and a needle retraction or “storage” mode.
SUMMARY OF THE INVENTION
An object of the present invention is to provide a fluid collection device with a protective shield that provides a releasable locking arrangement in both a needle “use” mode and a needle “storage” mode. Another object of the present invention is to provide a fluid collection device with a protective shield that is easy to manufacture on a mass production scale.
A further object of the present invention is to provide a fluid collection device with a protective shield that is easy and safe to use, particularly during locking and unlocking of the device when the needle is being moved between operable and inoperable positions.
The aforesaid objects are achieved individually and/or in combination and it is not intended that the present invention be construed as requiring two or more of the objects to be combined unless expressly required by the claims attached hereto.
In accordance with the present invention, a fluid collection device includes a receptacle telescopically received within the cavity of a shield. The shield and receptacle both have open proximal ends and substantially closed distal ends. A vacuum needle is secured to the receptacle distal end and extends from an aperture at the shield distal end when the receptacle is displaced toward the shield distal end.
The receptacle includes at least one engaging tab and at least one locking tab protruding from an exterior surface of the receptacle. The engaging tab is formed by a ramp having an inclined surface increasing in distance radially from the receptacle exterior surface and extending in an axial direction to terminate at an engaging edge facing the receptacle proximal end. The locking tab is located between the engaging tab and the receptacle proximal end and is formed by a ramp having an inclined surface increasing in d
Ganey Steven J.
Gem Plastics, Inc.
LandOfFree
Fluid collection device with protective shield does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Fluid collection device with protective shield, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid collection device with protective shield will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2988694