Fluid-assisted electrosurgical device

Surgery – Instruments – Electrical application

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C606S045000, C606S046000, C606S049000, C607S099000

Reexamination Certificate

active

06585732

ABSTRACT:

FIELD OF THE INVENTION
This invention relates generally to the field of medical instruments, and more particularly relates to an electrocautery device.
BACKGROUND OF THE INVENTION
Various types of electrocautery devices for incising and cauterizing body tissue are known and used in the medical field. Typically, such devices include a conductive tip or needle which serves as one electrode in an electrical circuit which is completed via a grounding electrode coupled to the patient. Incision of tissue is accomplished by applying a source of electrical energy (most commonly, a radio-frequency generator) to the tip. Upon application of the tip to the tissue, a voltage gradient is created, thereby inducing current flow and related heat generation at the point of contact. With sufficiently high levels of electrical energy, the heat generated is sufficient to cut the tissue and, advantageously, to simultaneously cauterize severed blood vessels.
It is widely recognized in the prior art that the often substantial amount of smoke produced by electrocauterization of tissue is at least unpleasant, and in some cases distracting or even hazardous to the operator and other attending medical personnel. As a result, it has been proposed, and is common, to provide an electrocautery device with smoke-aspirating capabilities, such that the smoke produced from electrocauterization is quickly withdrawn from the area of incision. Smoke aspiration may be accomplished by providing, in the handle of the electrocautery device near the electrocautery tip/electrode, an inlet port to be coupled to a vacuum or suction source. Examples of this are described in U.S. Pat. No. 4,307,720 to Weber, Jr., entitled “Electrocautery Apparatus and Method and Means for Cleaning the Same;” in U.S. Pat. No. 5,242,442 to Hirschfeld, entitled “Smoke Aspirating Electrosurgical Device;” and in U.S. Pat. No. 5.269,781 to Hewell, entitled “Suction Assisted Electrocautery Unit.”
It has also been recognized in the prior art that the accumulation of coagulated blood, tissue rubble, and other debris on the electrode/tip of an electrocautery device can present a problem for the operator, necessitating the periodic cleaning of the tip, e.g., by wiping the tip over sterilized gauze or the like. This is generally regarded as undesirable, since the need to clean the electrode/tip tends to interrupt the incision procedure and increases the risks associated with contamination of the tip or the incision, damage to the tip, injury to the operator, and the like. To address this problem, it has been proposed in the prior art to provide an electrocautery instrument in which the electrode/tip is in slidable engagement with the instrument's handle, such that when the tip is retracted into the hand, any adhering debris automatically scraped off onto the tip of the handle. Such an instrument is proposed in the above-referenced Weber, Jr. '720 patent. While this arrangement may have some benefit, it still may be necessary to wipe off the tip of the handle once the tip is retracted. It is believed that a more direct and effective approach to the problem would be to reduce the amount of debris created during the electrocautery process, thereby eliminating or at least reducing the need to clean the electrode/tip.
Atrial fibrillation is the condition where the normal rhythmic contractions of the heart are replaced by rapid irregular twitchings of the muscular heart wall. At least 1 million people in the U.S. suffer from atrial fibrillation. There are at least three detrimental side effects that occur during atrial fibrillation: a rapid irregular heartbeat; impaired cardiac hemodynamics due to a loss of AV synchrony; and an increased vulnerability to thromboembolism.
Surgical Treatment of Cardiac Arrythmias
. by Willis Hurst pg. 867.
The typical treatment for atrial fibrillation has been to give the patient drugs. For most patients with atrial fibrillation, this therapy has been only moderately effective and has typically produced undesirable side effects.
In view of the problems with drug therapy to treat atrial fibrillation, it has been recognized as desirable to find a surgical treatment that would permanently cure atrial fibrillation.
Cardiovascular Device Update
, July 1995, pg. 1. Although radiofrequency catheter ablation (RFCA) has proven to be a safe and effective way of treating the most benign causes of supraventricular tachycardia (SVT), such as Wolff-Parkinson-White and AV nodal re-entry tachycardia, using ablation to treat atrial fibrillation has proven to be challenging. Id.
The so called “maze” procedure has been developed to treat atrial fibrillation. In the “maze” procedure, incisions are made into the right and left atria via an open chest surgical procedure. These incisions are located to interrupt all the potential re-entry circuit patterns that could occur in the atria and cause atrial fibrillation. The clinical success with the “maze” procedure has been good.
A problem with the “maze” procedure is that it requires open chest surgery which is undesirable. It has been recognized that it would be desirable to duplicate the “maze” procedure with ablation. Id. at pg. 3. This would allow the possibility of performing a “maze”-like procedure thorascopically. However, it has also been recognized that current ablation technology has not developed to allow the “maze” procedure to be duplicated with ablation. Id.
A problem with prior art ablation has been that the ablating tip, if left in contact with a piece of tissue for too long, will burn through and perforate the tissue. In many applications, it has proven difficult to balance leaving an ablating tip in position on a piece of tissue for a sufficient time to allow the tissue to be ablated but not leave it in place for a length of time to burn through and thereby perforate the tissue.
Another problem with prior art ablation devices is that if the ablating tips are left in contact with the tissue too long, the tip “sticks” to the tissue being ablated. In removing the tip, large portions of tissue are often removed attached to the tip. This is not only a result to be avoided because of the tissue damage, but it is time consuming and irritating to the physician. These are clearly problems to be avoided.
SUMMARY OF THE INVENTION
In view of the foregoing considerations, the present invention is directed to an improved electrocautery instrument.
In accordance with one aspect of the invention, the electrocautery electrode/tip is implemented with a hollow, conductive tube terminating at its distal end in a ball point type tip. Conductive fluid is applied to the proximal end of the hollow electrode/tip, and expelled from the distal end thereof during electrocautery. The ball point distal tip allows the distal tip to be directly applied to the tissue and “rolled” or slid along the tissue. This allows the distal tip to be moved across the tissue without dragging or snagging on the tissue. In addition, the conductive fluid expelled from the distal tip farther lubricates the distal tip as it moves across the tissue.
In accordance with another aspect of the invention, the conductive fluid emanating from the electrode/tip conducts the RF electrocautery energy away from the distal tip so that it is primarily the fluid, rather than the distal tip that actually accomplishes the cauterizing of tissue. That is, the fluid serves as a “virtual” electrocautery electrode. Since it is the fluid, rather than the distal tip that cauterizes, coagulates and ablates, no burns or perforations are made to the tissue, reducing the amount of debris at the site of ablation. Also, the flow of fluid through the electrode/tip tends to keep the distal tip clean and cool.


REFERENCES:
patent: 3163166 (1964-12-01), Brent et al.
patent: 4037590 (1977-07-01), Dohring et al.
patent: 4307720 (1981-12-01), Weber, Jr.
patent: 4920982 (1990-05-01), Goldstein
patent: 5242441 (1993-09-01), Avitall
patent: 5242442 (1993-09-01), Hirshfeld
patent: 5269781 (1993-12-01), Hewell III
patent: 5313943 (1994-05-01), Houser et al.
paten

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fluid-assisted electrosurgical device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fluid-assisted electrosurgical device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fluid-assisted electrosurgical device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3028829

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.