Flow stabilizing device

Rotary kinetic fluid motors or pumps – With means for re-entry of working fluid to blade set – Re-entry working fluid joins inlet working fluid upstream of...

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C415S058500, C415S144000, C415S209200, C415S914000

Reexamination Certificate

active

06699008

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a device for at least partially stabilizing vortex or other unstable flow in a flow channel, and in particular to a substantially radial, vaneless diffuser defined by an annular slot in the sidewalls of the flow channel.
BACKGROUND OF THE INVENTION
The use of a diffuser to reduce the velocity and increase the static pressure of a fluid passing through a system is well known. As a fluid flow enters a diffuser, kinetic energy in the fluid is converted to a static pressure rise due to conservation of angular momentum when swirl is present and conservation of linear momentum. Diffusers are often used in combination with a bladed impeller or combined inducer/impeller within a particular system.
Bladed impellers or combined inducer/impellers are the key component of centrifugal, mixed flow, and axial pumps, compressors, blowers, and fans to move various fluids (i.e., air, water, vapor, or combination thereof) through a system. Depending on the condition of the fluid flow as it approaches the inlet to the equipment, the design of bladed impellers or combined inducer/impellers may be critical to control instability in the fluid flow and prevent instability in the equipment overall and to control other fluid problems such as non-collateral boundary layers. Examples of instabilities in fluid flow include vortices (in any type of fluid) often created from the impeller/inducer design itself, cavitating flow in liquids caused by vortices in the fluid, or a combination thereof, and boundary layer flows which are not collateral with the main flow direction.
In the case of conventional pumps, bladed impellers or combined inducer/impellers are typically used to deal with very low inlet pressure conditions. As the fluid passes through the bladed section, it experiences a rise in pressure. In the case of a cavitating liquid/vapor flow, the increase in pressure may cause the vapor bubbles in the flow to collapse and/or condense thereby causing the fluid to transfer from a vapor phase back to a liquid phase. For certain applications, this is extremely critical. Turbopumps, aircraft fuel pumps, and many industrial pumps are concerned with very low inlet pressure conditions.
An unfortunate aspect of inducer performance is that the cavitating flow cannot be completely prevented under various operating conditions. Performance remains constant down to a very low inlet pressure, but with sufficient reduction in the inlet pressure a complete breakdown in head results. This typically occurs when cavitated (two-phase) flow, originating principally from a part-span or tip vortex, substantially fills the impeller passages. These instabilities result from the development of cavitating flow in the inducer. If this developing flow is unable to maintain a consistent, uniform, and steady flow pattern within the inducer, oscillations result. These oscillations can be serious, leading to auto-oscillation where a dynamic instability exists in the impeller and begins to propagate instabilities into the entire pumping network and possibly into downstream elements. As a result, a diffuser may be used in the inducer region to help remove a portion of either the cavitating flow or the vortices that can lead to cavitating flow in the fluid.
In addition to applying a diffuser to the field of pumps, the same application can be made for centrifugal, mixed flow, and axial compressors, blowers, and fans. The fundamental difference is that the cavitation that was suppressed or removed in the case of the pumps does not apply at all in the case of compressors, fans, and blowers which handle various gases. Cavitation only occurs in liquids. Nonetheless, it is possible to set up a leading edge vortex and other forms of inlet instability, which accompanies appropriate shaping of a vane leading edge. Such a vortex or other unstable zone may contain substantial energy that can negatively impact the operation of the respective equipment if not controlled.
As mentioned above, the use of a diffuser to reduce the velocity and increase the static pressure of a fluid passing through a system is well known when dealing with common inlet flows, but has not been previously used to swallow a tip vortex. Prior patented devices utilize various means in an attempt to address the problems related to inlet cavitation and the development of other flow instabilities within the inlet region. Allowing the flow to be pulled off through a cover slot or set of holes has been achieved in early patented work by Chapman and others (See Model 250-C301C28B Compressor Development by Dennis C. Chapman, General Motors Corporation). Allowing flow to be pulled off and then reentered upstream has also been accomplished through earlier patents by Jackson (U.S. Pat. No. 3,504,986, issued on Apr. 7, 1970), Cooper (U.S. Pat. No. 4,375,937, issued on Mar. 8, 1983), Meng (U.S. Pat. No. 4,708,584, issued on Nov. 24, 1987), and Edwards (U.S. Pat. No. 2,832,292, issued on Apr. 29, 1958).
Prior attempts at designing an effective diffuser for dealing with highly compromised flows such as a tip vortex have failed for various reasons. Previous diffuser designs are often focused on re-circulating flow rather than effectively diffusing flow. For example, flow is often bled off and routed through a tortuous flow path that dissipates the energy contained in the flow. By dissipating the energy in the fluid flow, the pressure contained in the fluid is reduced thereby reducing the effectiveness of any diffusing device present. In addition, diffusers of prior inventions often include vanes. Vaned diffusers have been known to cause additional instability in the flow field by causing distortion. In addition, vanes increase the difficulty of fabrication and installation of a diffuser. Still other diffuser designs fail to consider the particular characteristics of the flow field. For example, the length of other diffuser slots is often too short to cause enough static pressure to collapse and/or condense the vapor bubbles within a particular cavitating flow.
SUMMARY OF THE INVENTION
The present invention is a device for at least partially stabilizing an unstable fluid flow within a flow channel by capturing at least a portion of the unstable fluid within a vaneless diffuser. An additional aspect of the invention includes maintaining and harnessing a substantial portion of the energy contained in the fluid as it flows through the diffuser in order to take additional advantage of the fluid. An example of additional advantage includes discharging the diffuser effluent into the flow channel to help reduce instability in the flow channel. An additional aspect of the present invention is a diffuser design that is directly related to the particular fluid flow characteristics in which it will operate.
In one embodiment of the present invention, a device for at least partially stabilizing an unstable fluid flow within a flow channel includes an inducer or impeller residing at least partially within the flow channel, the inducer or impeller having rotatable blades for drawing flow into, or being driven by the flow in, the flow channel, the inducer or impeller rotatable about an axis, the flow channel defined by interior sidewalls of a housing, the housing at least partially surrounded by an inlet plenum, and the housing including an exit. The device also includes at least one diffuser slot having an inlet and an exit, the inlet in fluid communication with the flow channel, the diffuser slot(s) being substantially radial with respect to the axis. The device also includes at least one passage in fluid communication with the exit of the diffuser slot(s). The passage(s) may be in fluid communication with the inlet plenum, the housing exit exit, an area downstream of the housing exit, the flow channel, or a combination thereof. Finally, the diffuser slot(s) of the device generally have a radius ratio greater than or equal to 1.03 and are free of vanes.
In another embodiment of the present invention, a device includes multiple diffuser slots located a

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flow stabilizing device does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flow stabilizing device, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flow stabilizing device will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3268882

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.