Flow restrictor valve for a downhole drilling assembly

Boring or penetrating the earth – With below-ground tool drive prime mover – Fluid rotary type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06202762

ABSTRACT:

FIELD OF INVENTION
The present invention relates to a drive fluid flow restrictor device or valve for use in a downhole drilling assembly of the type comprising a fluid driven motor. Further, the drilling assembly preferably comprises a driveshaft operatively connected with the motor, a housing for enclosing the driveshaft and an annular flow passage defined between the driveshaft and the housing for circulating drive fluid therethrough and wherein the flow restrictor device controls by restricting, either partially or completely, the circulation of drive fluid through the annular flow passage.
BACKGROUND OF INVENTION
Moineau pump type drilling motors or downhole positive displacement drilling motors are extensively used for drilling boreholes from the surface to a desired location within a selected underground hydrocarbon producing formation. To operate the drilling motor, a pressurized fluid is pumped into and circulated through a progressing axial fluid cavity or chamber within the power unit of the motor formed between a helical-lobed rotor and a compatible helical-lobed stator comprising tile power unit. The force of the pressurized circulating fluid being pumped into the axial cavity between the rotor and stator causes the rotor to rotate within the stator. The rotation of the rotor is transferred to the drill bit through a driveshaft.
Various circulating fluids may be used to actuate the downhole motor, such as mud, water, air or other gases. Thus, the hydraulic or pneumatic energy of the pressurized circulating fluid is converted into the mechanical energy of the rotating driveshaft and the attached drill bit. Further, the bit rotation speed or rotations per minute (“RPM”) is directly proportional to the circulating fluid flow rate between the rotor and stator. If for any reason the motor is operated above a maximum desirable RPM for the particular motor, there is a tendency for damage and increased or accelerated wear to the motor.
Excessively high or damaging RPMs of the driveshaft have been found to particularly occur in positive displacement motors operated or actuated by a compressible fluid such as air or other gases. Specifically, excessive RPMs have been found to occur whenever the motor is pulled up off of the bottom of the drilled borehole or the weight on bit is otherwise removed from the drill bit or significantly decreased such as when the weight on bit is drilled off.
The decreased weight on bit results in a runaway condition caused by the sudden lowering of the pressure and consequent expansion of the compressed fluid, such as the compressed gas or air, inside the drill string and motor normally present during the drilling mode or performance of the drilling operation. As indicated, the pressure drop across the motor's power unit, including the rotor and stator, normally provides the energy for the creation of the rotary motion of the driveshaft and bit when torque is generated at the bit in the drilling mode. Thus, an excessive or sudden reduction in pressure within the motor has a tendency to create excessive RPMs of the driveshaft. In other words, the decreased weight on bit reduces the torsional resistance to the rotor of the motor, which reduces the pressure resistance and thus the pressure within the motor. The reduction in pressure within the motor permits the expansion of the compressed fluid resulting in excessive motor speed and rotation of the driveshaft.
This runaway condition is particularly prevalent when the motor is actuated by compressed air or gas as compared with the same motor driven by a flow of drilling mud. In fact, it has been found that runaway RPMs when utilizing compressed air or gas can be as high as 5 to 8 times the rated maximum RPM for the motor. Consequently, serious damage and accelerated wear results to both the rotating and stationary parts comprising the motor.
Several devices and systems exist for controlling the flow of drilling fluid through the power unit which are dependent upon and reactive to the pressure of the drive fluid within the motor.
For instance, U.S. Pat. No. 4,339,007 issued Jul. 13, 1982 to Clark describes a control system for a progressing cavity hydraulic downhole drilling mud motor for controlling the pressure drop of the fluid through the motor so that it does not become excessive (such as may be caused by increased torsional resistance of the rotor). The control system includes a valve sub attached to an upper end of a power unit including a rotor and stator, which valve sub is located above the rotor and the stator. The valve sub comprises a valve housing secured to the stator and a flow valve linked with the rotor and positioned within the valve housing to control the flow of fluid through the valve housing. The flow valve is movable between an open and closed position in response to the fluid pressure within the motor, however, the valve is normally biased towards the open position.
Further, U.S. Pat. No. 5,351,766 issued Oct. 4, 1994 to Wenzel also describes a flow restrictor for controlling the rate of mud flow through the bearing assembly of a mud lubricated drilling motor. In particular, a first seal, coupled to an outer housing, is biased by springs towards a second seal, coupled to an inner member, to bring it into sealing engagement therewith to form a mechanical seal having a first inner side and a second outer side. A first fluid flow passage extends from the interior of the inner member to the first side of the mechanical seal, while a second fluid flow passage extends from the second side of the mechanical seal to the exterior of the outer housing. A number of grooves extend from the first to the second side of the mechanical seal, which turns the mechanical seal into a flow restrictor.
In operation, drilling mud passes through the first fluid flow passage to the first side of the mechanical seal and then through the grooves from the first side to the second side of the mechanical seal. The mud is then vented to the exterior of the outer housing through the second fluid flow passage. The pressure with which the first seal and the second seal are engaged is determined by the biasing force of the springs applied to the seals. Therefore, the springs are selected based upon the desired flow rate through the mud motor.
U.S. Pat. No. 4,768,598 issued Sep. 6, 1988 to Reinhardt describes a valving apparatus for protecting a downhole fluid pressure motor from excessive fluid pressures within the motor, which apparatus is mounted directly above the motor. The apparatus includes a flow plug and a piston for shifting the position of the flow plug. Upon the occurrence of a predetermined fluid pressure across the motor, the fluid pressure moves the piston upwardly, which concurrently causes an upward movement of the flow plug to produce a flow constriction in the fluid flow path of the pressurized fluid. The upward motion of the piston also opens a bypass flow path around the motor to reduce the fluid pressure being applied to the motor.
If the operator responds to the excess pressure by raising the drill string at the surface, the fluid pressure will be reduced within the motor and the piston will move downwardly to its initial position. Downward movement of the piston results in downward movement of the flow plug and permits the fluid flow path through the motor to be re-established. Thus, the device is actuated by and reactive to the pressure within the motor.
These devices and systems are designed to control the pressure drop or the fluid flow through the motor or to control excessive pressure within the motor. They do not specifically address the runaway condition described above nor are they reactive to or actuated by the weight on bit. However, various attempts have been made to specifically address the runaway condition and to avoid the damage and wear caused by the resulting excessive RPMs. These attempts have not been completely satisfactory.
Several attempts to provide a solution to the runaway condition include a clutch mechanism or clutch arrangement to prevent rotation of the

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flow restrictor valve for a downhole drilling assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flow restrictor valve for a downhole drilling assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flow restrictor valve for a downhole drilling assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2453481

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.