Flow regulator

Pipes and tubular conduits – With flow regulators and/or baffles – Restrictors

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C138S045000

Reexamination Certificate

active

06571831

ABSTRACT:

BACKGROUND
The invention concerns a flow regulator with a regulator housing which has a control peg or control cone in a passage channel which encompasses an annular flow restrictor of elastic material, which flow restrictor defines a control gap between itself and at least one part fixed in the housing. The cross section of the control gap is alterable due to the flow restrictor being deformed under the pressure differential formed during cross flow. The control gap is provided between the flow restrictor and the inner surface area of the regulator housing as well as between the flow restrictor and the peripheral surface area of the control peg or control cone, and regulator recesses are provided peripherally spaced at a distance from one another on the inner surface area of the regulator housing as well as on the peripheral surface area of the control peg or control cone.
Such flow regulators are used, for example, in water conduits in order to keep the flow amount conveyed per unit time as constant as possible even with strong pressure fluctuations.
Previously know flow regulators have a conically tapering control peg in a passage channel of their regulator housing which encompasses an annular flow restrictor of elastic material. This annular flow restrictor defines a control gap between itself and a part fixed in the housing, the mean diameter of which is alterable due to the flow restrictor being deformed under the pressure differential forming during cross flow. Here on the surface areas of the parts fixed in the housing defining the control gap, regulating recesses are provided set at a distance from one another peripherally and oriented in the direction of flow.
Thus, flow regulators are already known where the regulating recesses are provided on the inner surface of the regulator housing, and if need be a central passage hole is present. These previously known flow regulators nevertheless have the disadvantage that the amount of liquid flowing through per unit of time cannot be kept completely constant, but rather continues to increase slightly with rising pressure.
Also flow regulators are already known which have the regulator recesses on the peripheral surface area of the control peg (see for example DE 40 41 116 A1). These flow regulators are indeed distinguished in that the required flow amount is attained at a comparatively low fluid pressure, but frequently a flow maximum lying considerably above the flow standard value appears, which decreases again with rising pressure.
From DE-OS 21 31 117 a flow regulator is already known the elastic flow restrictor of which, depending upon water pressure, is pressed axially as well as radially against corresponding regulator surfaces. The elastic flow restrictor of the previously known flow regulator for this purpose encompasses a central contoured control peg. Above and beyond this, the elastic flow restrictor sits on a shoulder surface which is provided with a number of cavity-like depressions. These cavity-like depressions enable, at low connection pressure, an additional amount of liquid to flow through along the inner periphery of the regulator housing under the elastic flow restrictor. Moreover, the depressions provided on the shoulder surface results in the elastic flow restrictor not being able to run in or on throttling on or into the wave-like contoured control peg, since for the present a pressure differential necessary for its influx and deformation cannot build up in front of and behind the elastic ring. Only when the connection pressure becomes higher is the annular elastic flow restrictor pressed so far into the cavity-like depressions of the shoulder surface that it nestles sealing tightly into these, and consequently the pressure differential necessary for regulation can arise.
Due to the temporally staggered stress of the axial and radial control surfaces, the necessary regulating water amount is reached with the previously known flow regulator already at a comparatively low inlet pressure. The maximal flow through amount is nonetheless restricted even with this previously known flow regulator through the unobstructed width of the control gap remaining between the control peg and the flow restrictor.
From U.S. Pat. No. 4,000,857, a sanitary construction that is mounted on the end of a faucet. This known construction provides a jet forming control that includes a flow regulator of the type known in the art. The flow regulator includes a control peg that is encompassed by an annular flow restrictor made of elastic material. A control gap is formed between the flow restrictor and the inner surface area of the regulator housing on one side, and between the flow restrictor and the peripheral surface area of the control peg on the other side, whose cross-sectional area is changed by the deformation of the flow restrictor based on the pressure differential of the through flow. Regulator recesses which are peripherally spaced from one another and which are oriented in the flow direction are located on the inner surface area of the regulator housing and on the peripheral surface area of the control peg, and have the same cross-sectional form.
Also, this known flow regulator does not maintain the flow rate per unit time constant under varying fluid pressures for a desired flow through rate.
SUMMARY
There therefore exists in particular the object of creating a flow regulator of the above-mentioned type with a comparatively high maximal through flow amount which attains the desired through flow amount per unit of time at a comparatively low fluid pressure and remains practically constant even during rising or strongly fluctuating fluid pressures.
In order to attain this object, in accordance with the invention, the flow regulator in accordance with the previously noted art, in particular, the control recesses in the area of the flow restrictor have a variably formed cross-section, and that the control recesses for responding in the lower pressure ranges have a larger aperture width facing the flow restrictor in comparison to the regulating recesses for higher pressure ranges.
Also, with the flow regulator of the invention, the pressure-dependent deformation of the annular flow restrictor can act not only on one side, but also inwardly as well as outwardly, and control the corresponding flow cross sections of the regulating recesses. The flow regulator in accordance with the invention has regulating recesses which in the area of the flow restrictor have different cross-sections. Preferably, the control recesses for responding in the lower pressure ranges have a larger aperture width facing the flow restrictor in comparison to the regulating recesses for higher pressure ranges. The inventive flow regulator has the advantage, that the low pressure regulating recesses can be rapidly closed, while the high pressure responding regulating recesses are first being closed when the fluid pressure is very strong. It can be seen that the inventive flow regulator provides at the same time a high maximum through flow volume with a contrastingly small construction size, because the flow restrictor can at the same time and synchronously be deformed in the direction of the regulating recesses provided on both sides, and since, on both sides of this flow restrictor, in each case a control gap with parallel water streams to be adjusted is provided.
To be sure, variously shaped wave-like formations are provided on the central control peg of the previously known flow regulator from DE-OS 21 31 117. However, these wave-like formations nevertheless only define typically uniform regulating recesses. Variously shaped regulating recesses in contrast are not provided in DE-OS 21 31 117.
It is possible that the regulating recesses on the inner surface area of the regulator housing as well as the on the peripheral surface area of the control peg or control cone can be provided with variously shaped cross sections in the area of the flow restrictor.
For separation and optimizing functions, a preferred embodiment in accordance with the invention

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flow regulator does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flow regulator, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flow regulator will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3110987

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.