Flow measurement with diagnostics

Data processing: measuring – calibrating – or testing – Measurement system in a specific environment – Mechanical measurement system

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C702S100000, C073S001350, C073S001570

Reexamination Certificate

active

06654697

ABSTRACT:

BACKGROUND OF THE INVENTION
Fluid flow meters are used in industrial process control environments to measure fluid flow and provide flow signals for flow indicators and controllers. Inferential flow meters measure fluid flow in a pipe by measuring a pressure drop near a discontinuity within the pipe. The discontinuity (primary element) can be an orifice, a nozzle, a venturi, a pitot tube, a vortex shedding bar, a target or even a simple bend in the pipe. Flow around the discontinuity causes both a pressure drop and increased turbulence. The pressure drop is sensed by a pressure transmitter (secondary element) placed outside the pipe and connected by impulse lines or impulse passageways to the fluid in the pipe. Reliability depends on maintaining a correct calibration. Erosion or buildup of solids on the primary element can change the calibration. Impulse lines can become plugged over time, which also adversely affects calibration.
Disassembly and inspection of the impulse lines is one method used to detect and correct plugging of lines. Another known method for detecting plugging is to periodically add a “check pulse” to the measurement signal from a pressure transmitter. This check pulse causes a control system connected to the transmitter to disturb the flow. If the pressure transmitter fails to accurately sense the flow disturbance, an alarm signal is generated indicating line plugging. Another known method for detecting plugging is sensing of both static and differential pressures. If there is inadequate correlation between oscillations in the static and differential pressures, then an alarm signal is generated indicating line plugging. Still another known method for detecting line plugging is to sense static pressures and pass them through high pass and low pass filters. Noise signals obtained from the filters are compared to a threshold, and if variance in the noise is less than the threshold, then an alarm signal indicates that the line is blocked.
These known methods rely on providing static pressure sensors or disassembly of the flow meter or use of an external control system for diagnostics, increasing complexity and reducing reliability. These known methods do not provide for diagnosing the condition of the primary element. There is thus a need for a better diagnostic technology providing more predictive, less reactive maintenance for reducing cost or improving reliability.
SUMMARY OF THE INVENTION
A fluid flow meter diagnoses the condition of its primary element or impulse lines. The primary element and the impulse lines together form a differential pressure generator. This differential pressure generator generates a differential pressure that represents the flow rate. The differential pressure is coupled to a differential pressure sensor in the fluid flow meter.
A difference circuit coupled to the differential pressure sensor generates a difference output representing the sensed differential pressure minus a moving average of the sensed differential pressure.
A calculate circuit receives the difference output and calculates a trained output of historical data obtained during an initial training time. The calculate circuit also calculates a monitor output of current data obtained during monitoring or normal operation of the fluid flow meter.
A diagnostic circuit receives the trained output and the monitor output and generates a diagnostic output indicating a current condition of the pressure generator relative to an historical condition.
A flow circuit is also coupled to the sensor and generates an output indicating the flow rate.


REFERENCES:
patent: 3096434 (1963-07-01), King
patent: 3404264 (1968-10-01), Kugler
patent: 3468164 (1969-09-01), Sutherland
patent: 3590370 (1971-06-01), Fleischer
patent: 3688190 (1972-08-01), Blum
patent: 3691842 (1972-09-01), Akeley
patent: 3701280 (1972-10-01), Stroman
patent: 3849637 (1974-11-01), Caruso et al.
patent: 3855858 (1974-12-01), Cushing
patent: 3952759 (1976-04-01), Ottenstein
patent: 3973184 (1976-08-01), Raber
patent: RE29383 (1977-09-01), Gallatin et al.
patent: 4058975 (1977-11-01), Gilbert et al.
patent: 4099413 (1978-07-01), Ohte et al.
patent: 4102199 (1978-07-01), Talpouras
patent: 4122719 (1978-10-01), Carlson et al.
patent: 4249164 (1981-02-01), Tivy
patent: 4250490 (1981-02-01), Dahlke
patent: 4279013 (1981-07-01), Cameron et al.
patent: 4337516 (1982-06-01), Murphy et al.
patent: 4399824 (1983-08-01), Davidson
patent: 4417312 (1983-11-01), Cronin et al.
patent: 4517468 (1985-05-01), Kemper et al.
patent: 4530234 (1985-07-01), Cullick et al.
patent: 4571689 (1986-02-01), Hildebrand et al.
patent: 4630265 (1986-12-01), Sexton
patent: 4635214 (1987-01-01), Kasai et al.
patent: 4642782 (1987-02-01), Kemper et al.
patent: 4644479 (1987-02-01), Kemper et al.
patent: 4649515 (1987-03-01), Thompson et al.
patent: 4686638 (1987-08-01), Furuse
patent: 4707796 (1987-11-01), Calabro et al.
patent: 4736367 (1988-04-01), Wroblewski et al.
patent: 4736763 (1988-04-01), Britton et al.
patent: 4777585 (1988-10-01), Kokawa et al.
patent: 4818994 (1989-04-01), Orth et al.
patent: 4831564 (1989-05-01), Suga
patent: 4841286 (1989-06-01), Kummer
patent: 4853693 (1989-08-01), Eaton-Williams
patent: 4873655 (1989-10-01), Kondraske
patent: 4907167 (1990-03-01), Skeirik
patent: 4924418 (1990-05-01), Backman et al.
patent: 4934196 (1990-06-01), Romano
patent: 4939753 (1990-07-01), Olson
patent: 4964125 (1990-10-01), Kim
patent: 4988990 (1991-01-01), Warrior
patent: 4992965 (1991-02-01), Holter et al.
patent: 5005142 (1991-04-01), Lipchak et al.
patent: 5043862 (1991-08-01), Takahashi et al.
patent: 5053815 (1991-10-01), Wendell
patent: 5067099 (1991-11-01), McCown et al.
patent: 5081598 (1992-01-01), Bellows et al.
patent: 5089984 (1992-02-01), Struger et al.
patent: 5098197 (1992-03-01), Shepard et al.
patent: 5099436 (1992-03-01), McCown et al.
patent: 5103409 (1992-04-01), Shimizu et al.
patent: 5111531 (1992-05-01), Grayson et al.
patent: 5121467 (1992-06-01), Skeirik
patent: 5122794 (1992-06-01), Warrior
patent: 5122976 (1992-06-01), Bellows et al.
patent: 5130936 (1992-07-01), Sheppard et al.
patent: 5134574 (1992-07-01), Beaverstock et al.
patent: 5137370 (1992-08-01), McCullock et al.
patent: 5142612 (1992-08-01), Skeirik
patent: 5143452 (1992-09-01), Maxedon et al.
patent: 5148378 (1992-09-01), Shibayama et al.
patent: 5167009 (1992-11-01), Skeirik
patent: 5175678 (1992-12-01), Frerichs et al.
patent: 5193143 (1993-03-01), Kaemmerer et al.
patent: 5197114 (1993-03-01), Skeirik
patent: 5197328 (1993-03-01), Fitzgerald
patent: 5212765 (1993-05-01), Skeirik
patent: 5214582 (1993-05-01), Gray
patent: 5216226 (1993-06-01), Miyoshi
patent: 5224203 (1993-06-01), Skeirik
patent: 5228780 (1993-07-01), Shepard et al.
patent: 5235527 (1993-08-01), Ogawa et al.
patent: 5265031 (1993-11-01), Malczewski
patent: 5265222 (1993-11-01), Nishiya et al.
patent: 5269311 (1993-12-01), Kirchner et al.
patent: 5274572 (1993-12-01), O'Neill et al.
patent: 5282131 (1994-01-01), Rudd et al.
patent: 5282261 (1994-01-01), Skeirik
patent: 5293585 (1994-03-01), Morita
patent: 5303181 (1994-04-01), Stockton
patent: 5305230 (1994-04-01), Matsumoto et al.
patent: 5311421 (1994-05-01), Nomura et al.
patent: 5317520 (1994-05-01), Castle
patent: 5327357 (1994-07-01), Feinstein et al.
patent: 5333240 (1994-07-01), Matsumoto et al.
patent: 5347843 (1994-09-01), Orr et al.
patent: 5349541 (1994-09-01), Alexandro, Jr. et al.
patent: 5357449 (1994-10-01), Oh
patent: 5361628 (1994-11-01), Marko et al.
patent: 5365423 (1994-11-01), Chand
patent: 5367612 (1994-11-01), Bozich et al.
patent: 5384699 (1995-01-01), Levy et al.
patent: 5386373 (1995-01-01), Keller et al.
patent: 5388465 (1995-02-01), Okaniwa et al.
patent: 5394341 (1995-02-01), Kepner
patent: 5394543 (1995-02-01), Hill et al.
patent: 5404064 (1995-04-01), Mermelstein et al.
patent: 5408406 (1995-04-01), Mathur et al.
patent: 5408586 (1995-04-01), Skeirik
patent: 5414645 (1995-05-01), Hirano
patent: 5419197 (1995-05-01), Ogi et al.
patent: 5430642 (1995-07-01), Nakajima et al.
patent: 5434774 (1995-07-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flow measurement with diagnostics does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flow measurement with diagnostics, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flow measurement with diagnostics will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3184859

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.