Flow development chamber

Fluid handling – Processes – Involving pressure control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C137S810000, C137S811000, C137S812000, C137S806000, C406S173000

Reexamination Certificate

active

06659118

ABSTRACT:

FIELD OF THE INVENTION
This invention is directed to an apparatus and methods for conveying “flowable” materials through a conduit, such as, a pipe or hose, over long distances.
BACKGROUND OF THE DISCLOSURE
“Flowable” materials are those capable of flow movement, such as gases or a combination of gas and solids and/or liquids. Conveying systems for transporting flowable materials, such as pneumatic conveying systems, high and low pressure natural gas pipelines, flow lines, transmission lines, gathering systems, vapor recovery systems, coal bed methane gas lines, and liquid conduits, are known in the art, but all present problems when the materials are to be transported over large distances.
Pneumatic conveying systems for transporting material through a conduit have been in use for years and are well known in the art. Over the years the designs of these systems have changed to provide for greater efficiency in operational cost and labor. For instance, early systems utilized belt driven conveyors to transport materials from an input hopper to a mixing chamber. Unfortunately, these systems were inefficient in that the belt drives experienced many problems, such as wearing and breakage. Due, in part to problems experienced with belt systems, pneumatic conveying systems were developed.
Generally, pneumatic conveying systems include a feed mechanism, such as, an auger, for transporting the material to a mixing chamber. In the mixing chamber, the material is entrained in pressurized air which is supplied into the mixing chamber through jets or air inlets. In some systems, the material and air are mixed and accelerated in an accelerating device, such as, a venturi pipe, which is connected to the mixing chamber. The accelerated mixture is then transported out of the venturi pipe and into a conduit which conveys the materials to a specified destination. Typically, conventional pneumatic conveying systems can transport material up to about 1,000 feet. The limited distance the material can be conveyed is due, in part, to the operating pressure of the system and the instability of the material flow in the conduit.
Many other problems also exist with pneumatic conveying systems. For example, if excessive pressure builds up in the conduit, e.g., from a blockage in the conduit, gas and product back flow into the hopper. This back flow is known as “blowback”. Further, as the material travels through the conveying conduit, in earlier designs, and current designs, it strikes the walls of the conduit. This not only damages the walls of the conduit, but damages the material as well. Thus, problems of erosion of equipment and attrition of product are also present. Finally, many current designs incur a high cost of operation due to the high requirement of energy input to operate the system.
Many pneumatic systems have been developed to address different problems. For instance, the blowback problem, among others, was addressed in the system described in U.S. Pat. No. 4,711,607 to Wynosky et al. In the Wynosky device, a rotating auger enclosed by a cylindrical barrel transports particulate material towards the discharge end of the barrel which resides within a plenum chamber. Pressurized gas is introduced into the plenum chamber for creating a gas flow in a venturi pipe, which is coupled at one end to the plenum chamber and at its other end to a conduit used to transport the material. Measurements of the pressure differential between the plenum chamber and the conduit are used to monitor potential blowback problems. Further, this system operates at lower operating pressures than most systems, e.g., 12-15 psi. Nonetheless, this system does not achieve a sufficiently stable flow of material through the conduit, which restricts the distance over which the material can be transported, including the ability to transport the material through elevational or directional changes.
U.S. Pat. No. 5,681,132 to Sheppard, Jr. describes an on-line pumping unit designed to extend transport distances. In Sheppard, the pumping unit includes a screw conveyor assembly coupled to a laminar flow, inductor assembly. In this system, the inductor assembly forms the core of a linear accelerator apparatus used to extend transport distances. Nonetheless, this system does not teach how material can be conveyed over very long distances, such as, for example, a mile.
Known natural gas conveying systems, pipelines, transmission lines, and gathering systems have similar problems. Gas is conveyed through the natural gas flow line in mid-and high-pressure systems in a turbulent flow. Turbulent flow results in friction loss and energy inefficiency, resulting in increased pressure drop. Therefore, higher pressure, increased compressor size, and increased pipeline capacity is needed to push the quantity of gas through the long distance.
Fluids frequently accumulate in low points of the flow line in high, mid and low pressure systems and these low points therefore sometimes have significantly higher pressure than other portions, resulting in erratic gas production. To alleviate this problem in larger lines, a “pig” is used as a scrubber that can push the liquids down to another part of the line where the pig is retrieved along with the liquid. In smaller lines, the production is halted for periods of time to increase the formation pressure to move the accumulated fluids from the low points in the line. Additionally, in down-hole gas wells with accumulated fluids, plungers are traditionally used to convey the accumulated fluids to the surface, which is time-consuming and costly. The increase of accumulated fluids over time and breaks in production lead to lower overall gas production, inefficiencies and higher maintenance and production downtime. The fluids may also freeze in winter, causing plugging of the line and lost gas production.
Liquid is also typically conveyed in a turbulent flow, which leads to both energy inefficiencies and damage to the conduit, as described above. Additionally, non-turbulent flow of material can become turbulent over long distances, and flow-changing devices cannot be easily installed in an existing casing.
As shown from above, a need exists in the art for a system that requires low energy input in particulates conveying, reduces equipment wear, reduces product degradation and can transport materials for long distances, such as a mile and over. Further, a need exists for a system that can convey materials through dramatic high angle and vertical elevation and sharp directional changes. A need also exists for a system that can convey materials without plugging, and can further classify and mechanically dry materials during processing. A need exists to alleviate pressure in lines due to accumulated fluids. A need also exists in the art for a conveying system that can be easily installed within an existing casing in oil and gas production lines.
SUMMARY OF THE DISCLOSURE
The instant invention is directed to a material handling system for developing a strong laminar flow of flowable material surrounded by a boundary layer flow of the same or different flowable material, such that long transport distances through dramatic elevation and directional changes can be achieved. The boundary layer flow protects the walls of the conducting conduit from assault by the conveyed material, thereby protecting both the walls of the conduit and the conveyed material. Further, this system can utilize low pressure to initiate the conduction of material, thereby dramatically reducing the operational costs of this system. This system can also operate in high pressure such as, for example, natural gas conveyance at up to and above 1,500 psi. However, this system can equally operate in low pressure gas wells and pipelines, including coal bed methane wells.
One embodiment of the instant invention includes a blower assembly, an inlet and an outlet conduit. The blower assembly supplies low pressure air to the system through the inlet, which in some preferred embodiments receives both air and the particulate material to be conveyed. The i

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flow development chamber does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flow development chamber, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flow development chamber will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3172914

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.