Flow completion apparatus

Wells – Above ground apparatus – Well caps or casing heads

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C166S086300, C166S091100, C166S097100

Reexamination Certificate

active

06612368

ABSTRACT:

BACKGROUND OF THE INVENTION
The present invention relates to a flow completion apparatus for producing oil or gas from a subsea well. More particularly, the invention relates to a flow completion apparatus which comprises a tubing hanger having an annulus bore which is adapted to communicate with an annulus port in a tubing hanger running tool to provide for fluid communication between the tubing annulus and the choke and kill line of a blowout preventer which is installed over the tubing hanger during installation and workover of the flow completion apparatus.
Flow completion assemblies for producing oil or gas from subsea wells are generally categorized as either conventional or horizontal. A typical horizontal flow completion assembly, such as that disclosed in U.S. Pat. No. 6,039,119, comprises a wellhead housing which is installed at the upper end of the well bore, a tubing spool which is connected to the top of the wellhead housing and which includes a central bore extending axially therethrough, an annular tubing hanger which is suspended in the central bore, and a tree cap which is installed in the central bore above the tubing hanger. The tubing hanger supports at least one tubing string that extends into the well bore and defines a tubing annulus surrounding the tubing string. In addition, the tubing hanger comprises a concentric production bore which communicates with the tubing string and a lateral production passageway that extends between the production bore and a production outlet in the tubing spool. The tubing spool also includes an annulus passageway which extends from the tubing annulus to an annulus outlet, and a workover passageway which extends from the annulus passageway to a portion of the central bore that is located above the tubing hanger. These passageways provide for communication between the tubing annulus and the central bore above the tubing hanger during installation and workover of the flow completion assembly.
The regulations of certain countries pertaining to the subsea production of oil and gas require that the flow completion assembly provide at least two pressure-containing barriers between the well bore and the environment. In the typical horizontal flow completion assembly, the first barrier is provided by a wireline plug that is installed in the production bore above the production passageway, in conjunction with an annular, usually metal seal which is positioned between the tubing hanger and the tubing spool above the production outlet. The second barrier is provided by the tree cap, which is sealed to the tubing spool by an annular, typically metal seal and often includes an axial through bore which in turn is sealed by a wireline plug or other suitable closure member.
During installation of the flow completion assembly, the tubing spool is landed onto the wellhead housing, after which a blowout preventer (“BOP”) is installed onto the tubing spool by means of a riser deployed from a surface vessel. The tubing hanger is then lowered on a tubing hanger running tool (“THRT”) through the riser and the BOP and landed in the central bore of the tubing spool. The THRT is then retrieved and the tree cap is lowered on a dedicated tool, such as a THRT, through the riser and the BOP and landed in the central bore directly above the tubing hanger. After the tree cap is installed, the THRT is retrieved, the BOP is retrieved, and the flow completion assembly is ready to be put into production. During a typical workover of the flow completion assembly, the BOP and the riser are once again connected to the tubing spool, the tree cap is usually removed from the tubing spool, and the THRT is connected to the tubing hanger. Once the workover operations are completed, the THRT is retrieved and the tree cap is re-installed through the riser and the BOP. Then the THRT is retrieved, the BOP is retrieved, and the flow completion assembly is ready to be put back into production.
Since the tree cap is required to maintain well pressure in the event of a failure of the first barrier, the tree cap typically comprises a rigid metal body and a robust metal lockdown mechanism to firmly lock the body to the tubing spool. Consequently, the tree cap is usually too heavy to be installed by a remotely operated vehicle (“ROV”) and must instead be lowered from the surface vessel on a specially designed tree cap running tool. Thus, installation of the tree cap requires a special running trip, both during installation of the flow completion assembly and after a workover operation. Each such trip typically requires a significant amount of valuable rig time to complete, which necessarily increases the cost of completing and maintaining the well.
In addition, during retrieval of the THRT prior to installing the tree cap, debris within the riser often falls into the central bore of the tubing spool above the tubing hanger. Left unattended, this debris could foul the sealing surfaces of the central bore and thereby prevent the tree cap from forming an effective seal with the tubing spool. Therefore, before the tree cap is installed the central bore must be thoroughly cleaned, a process that consumes additional valuable rig time and increases the cost of completing and maintaining the well.
Furthermore, during both installation and workover of the typical horizontal flow completion assembly, communication between the tubing annulus and the surface vessel is usually established through the annulus passageway, the workover passageway, and either the choke and kill lines of the BOP or the annulus between the THRT and the riser. For example, deep well circulation is often accomplished by pumping fluid down the THRT, through the production bore, through the tubing string, up the tubing annulus, through the annulus passageway, through the workover passageway, into the central bore above the tubing hanger and through the BOP choke and kill lines. One problem with this arrangement is that the flow in the central bore of the tubing spool above the tubing hanger is generally unrestricted, and this unrestricted flow can foul the tubing hanger lockdown mechanism and erode the central bore, including the locking profile and the annular sealing surface within the central bore against which the tree cap must lock and seal, respectively.
SUMMARY OF THE INVENTION
In accordance with the present invention, these and other disadvantages in the prior art are overcome by providing a flow completion apparatus for controlling the flow of fluid through a tubing string which extends into a well bore and defines a tubing annulus surrounding the tubing string. The flow completion apparatus comprises a wellhead housing which is installed at an upper end of the well bore; a tubing spool which is connected over the wellhead housing and which includes a central bore that extends axially therethrough, a production outlet which communicates with the central bore, and an annulus passageway which communicates with the tubing annulus; a tubing hanger which is supported in the central bore and is connected to an upper end of the tubing string, the tubing hanger including a production bore which extends axially therethrough and a production passageway which communicates between the production bore and the production outlet; a first closure member which is positioned in the production bore above the production passageway; and a first annular seal which is positioned between the tubing hanger and the central bore above the production passageway. Furthermore, the tubing spool also comprises a workover passageway which extends between the annulus passageway and a portion of the central bore that is located above the first seal, and the tubing hanger also comprises an annulus bore which extends between the workover passageway and the top of the tubing hanger. In this manner fluid communication between the tubing annulus and the top of the tubing hanger may be established through the annulus passageway, the workover passageway and the annulus bore.
In accordance with another aspect of the present invention, the flow compl

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flow completion apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flow completion apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flow completion apparatus will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3102344

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.