Fluid handling – Liquid level responsive or maintaining systems – Electrical characteristic sensing
Reexamination Certificate
1997-07-01
2002-09-24
Walton, George L. (Department: 3753)
Fluid handling
Liquid level responsive or maintaining systems
Electrical characteristic sensing
C137S395000, C137S398000, C137S412000, C209S168000
Reexamination Certificate
active
06453939
ABSTRACT:
BACKGROUND
1. Field of the Invention
This invention relates to apparatus for controlling the fluid level in, between and when discharging liquid from flotation cells, or tanks, which are used for separation of liquid and solid phases of an influent fluid. Specifically, this invention relates to fluid control apparatus which operates on a reduced scale, and with a specially designed valve to provide more controlled flow of fluid.
2. Statement of the Art
Flotation cells or tanks are widely used in a variety of industries, such as oil, wastewater treatment, pulp and paper, and mining and mineral reclamation, to separate an influent liquid or feed slurry into a clarified liquid phase and a solid or particulate matter phase. Flotation tanks generally operate by facilitating the flotation of solid or particulate matter, such as mineral-bearing particles, to the top of the fluid bed contained in the tank, while a liquid phase develops toward the bottom of the tank. The liquid phase may typically contain varying amounts of solids or particulates which are not completely separated from the liquid. Thus, the liquid phase may range from a relatively clarified liquid to a pulp or slurry. Flotation of the solid phase or mineral particles to the top of the tank is often facilitated by such means as introducing air into the influent liquid to form a froth which captures or binds the solid or mineral particles matter and floats them to the top of the liquid volume in the tank. The solids or concentrated mineral particles matter which have been floated to the top of the liquid level are typically removed from the tank by causing the floating material to overflow into a launder, usually positioned about the periphery of the tank.
It is important to the efficient operation of flotation cells that the liquid level in the tank be maintained within a certain specified range so that the floating mineral concentrate of froth bed also remains at a specified level in the flotation cell to optimize recovery of the solid or particulate matter. In other words, if the liquid level in the flotation cell is too low, the separated solids or mineral concentrate, also referred to herein as “the float,” will remain afloat on the liquid volume and will not overflow into the launder, thereby increasing the residency time of the float. The longer the float stays in the tank, the greater the possibility that the solid or mineral concentrate will sink back into the liquid volume and decrease the efficiency of the separation process. Conversely, if the liquid level in the tank is too high, the float may move efficiently to the overflow launder, but an increased amount of liquid will overflow and enter the launder as well. An inordinate amount of liquid in the overflow launder reduces the efficiency of the later processing of the mineral concentrate.
Thus, it has been recognized for some time that it is beneficial to the operation of flotation tanks to provide means for controlling the liquid (i.e., pulp or slurry) level in the tank. Control devices which are conventionally used in industry comprise a separate tank, often termed a “box,” which is positioned externally to the flotation cell. The control box is in fluid communication with the flotation cell via one or more conduits interconnected between the flotation cell and the control box. In large plant operations, control boxes are typically interconnected between two adjacent flotation cells and are in fluid communication with both flotation cells. Conventional control boxes generally include a valve positioned internally to the box which operates to let fluid flow through the box from one flotation cell to the next adjacent flotation cell, thereby modifying the liquid level in both flotation cells.
Conventional fluid level control boxes tend to be substantially the same height as the flotation cell since the liquid level in the control box is maintained at approximately the same depth as the liquid in the flotation cell. Thus, for example, the control box may range in height from five feet to twenty feet. The length of conventional control boxes may generally be just short of the diameter of the flotation cell (e.g., three to six feet or greater) and may be one to five feet wide. In many large industrial applications, several flotation cells are positioned adjacent each other and are all placed in fluid communication with one or more adjacent flotation cells so that the liquid flow from one flotation cell is directed to the next adjacent cell, and so on. Conventional liquid level control boxes are positioned between adjacent flotation cells so that the liquid flowing from a first flotation cell enters into the control box. Liquid then enters into the next adjacent flotation cell through a conduit interconnected between the control box and the second flotation cell. By so arranging the flotation cells and liquid control boxes therebetween, the liquid level in each individual cell of a grouping of flotation cells can be optimally controlled.
One of the major drawbacks encountered with use of conventional liquid control boxes is their size, which not only increases capital costs in operation of the flotation cells, but limits the area capacity and, therefore, the number of flotation cells which may be installed at a given plant site. That is, conventional fluid control boxes are so large, and must necessarily be located between adjacent flotation cells, that they take up vital space which may be used for the installation of more flotation cells or which may be used for other purposes. Furthermore, when maintenance is required on conventional control boxes, the flotation cells to which the control box is attached must be taken off line while repairs are effected.
Additionally, the control valves of known liquid control boxes are, by virtue of their configuration, unable to provide finely controlled release of liquid through the control box. More specifically, known control valves provide an initial rapid flow rate of liquid which levels off quickly as the valve is opened. The fluid flow dynamics of conventional fluid level control boxes are, therefore, less subject to finite control.
It would be advantageous, therefore, to provide a fluid level control apparatus which provides finely controlled fluid flow therethrough, which provides ease of maintenance and repair, and which reduces capital costs by reducing the size and operation of the liquid level control apparatus and by enabling more flotation cells to be installed at a plant site,
SUMMARY OF THE INVENTION
In accordance with the present invention, a flotation cell liquid level control apparatus is configured for increased control of fluid flow therethrough and is structured to be reduced in size to increase operation efficiency and to increase area capacity for the placement and operation of flotation cells. The flotation cell liquid control apparatus of the present invention may be employed in connection with various types of flotation cells, and may be employed for use in connection with one or more flotation cells to control the liquid level in one flotation cell or adjacent flotation cells.
The flotation cell liquid level control apparatus of the present invention generally comprises a vessel which is located externally to a flotation cell and is of significantly smaller area in cross section than the flotation cell, or cells, to which it is connected. The smaller size of the control apparatus provides greater efficiency in operation as compared with the large control boxes known in the prior art, and the control apparatus reduces capital costs by providing more area capacity for the placement of flotation cells. The vessel has a bottom and sides, and has first and second interior chambers formed by a divider positioned within the vessel. The divider provides a valve seat against which a movable valve body is positionable to prevent fluid from flowing between the two interior chambers. The valve and valve seat are selectively operable to control movement of liquid received from a flotation cell through the
Cook Robert D.
Hunt Jerry W.
Baker Hughes Incorporated
TraskBritt
Walton George L.
LandOfFree
Flotation cell fluid level control apparatus does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Flotation cell fluid level control apparatus, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flotation cell fluid level control apparatus will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2821625