Static structures (e.g. – buildings) – Barrier or major section mounted for in situ repositioning;... – Barrier of hingedly connected sections
Reexamination Certificate
2002-03-18
2004-05-25
Friedman, Carl D. (Department: 3635)
Static structures (e.g., buildings)
Barrier or major section mounted for in situ repositioning;...
Barrier of hingedly connected sections
C052S746100, C237S069000, C165S056000
Reexamination Certificate
active
06739097
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a floor element for a floor heating or cooling system for mounting generally straight, parallel sections of a heat transporting conductor, the element including a sheet that has at least one channel and a layer of heat transfer material that extends over one main surface of the sheet and over each side of respective channels and that forms an upwardly open recess which receives a heat transfer conductor, wherein the upper side of the conductor lies flush with or lower than the upper side of the sheet, and wherein the channels extend completely through the thickness of the sheet. The invention also relates to a process of manufacturing the floor element, for generally straight, parallel sections of a heat transporting conductor.
The inventive floor element thus functions to define a locating path that provides the correct mutual spacing between different parts of a conductor loop that is adapted to deliver heat to the room and to receive heat therefrom respectively. The conductor may, for instance, be a heat-emitting electric cable or a pipe that conveys hot or cold fluid. The floor element is coated with a layer of heat-distributing material, with the intention of achieving essentially uniform distribution of the heating/cooling effect over the surface area of the floor.
However, the invention will be described below primarily with reference to a so-called heated floor, although it will be readily understood that the floor system can be used equally as well for cooling purposes.
2. Description of the Related Art
SE-B468 057 teaches a floor element for floor heating systems. The floor element includes an aluminium plate which is bent to form a plurality of mutually spaced and mutually parallel U-shaped, outwardly open channels/holders for a heat-emitting conductor. The plate is supported by a carrying sheet that has mutually parallel, through-extending slits that receive bent portions of the plate. The sheet, or more specifically ribs, that supports, support, the plate between the bent or folded portions of the plate is are connected to the plate. The floor element is fixed to the sub-floor.
The known floor element has several drawbacks. For instance, the plate is thick and rigid, so as to sustain the physical dimensions of the floor element. Because the plate is rigid, it is not possible to lay a clinker floor directly on or in the proximity of the aluminium plate of said element, in view of the risk of the clinker tiles cracking or loosening as a result of thermal stresses. The cost of laying a further covering layer on such floor elements is an onerous expense. Furthermore, the plate is expensive as a result of its necessary thickness. Cutting of the floor element is also a troublesome procedure, because of the thickness of the plate. Moreover, the plate is relatively heavy and demands a high cost.
SUMMARY OF THE INVENTION
The object of the present invention is to provide a floor element with which at least one of the aforesaid problems is eliminated either completely or partially. A further object of the invention is to provide a floor element whose width can be minimised, for instance during its transportation, and which provides a predetermined maximum width with respect to said channels in maximising the width of the floor element. Another object is to provide a favourable method of producing such elements. These objects are achieved with the floor element for mounting generally straight, parallel sections of a heat transporting conductor, such element including a sheet that has at least one channel and a layer of heat transfer material that extends over one main surface of the sheet and over each side of respective channels and that forms an upwardly open recess which receives a heat transfer conductor. The upper side of the conductor lies flush with or lower than the upper side of the sheet, and the channels extend completely through the thickness of the sheet. The heat transfer material is comprised of a thin, readily flexed foil that has a thickness of less than 200 &mgr;m, and the second main surface of the sheet is provided with one or more other foils which mutually hold together adjacent sheet parts defined by the channels and which define a maximum distance between said sheet portions corresponding to the diameter of the conductor.
According to a further embodiment, the mounting element includes a lateral slit that extends through the mounting element from the second main surface of the sheet up to the first main surface of the sheet, but not through the heat transfer layer which forms a hinge means between the two mutually foldable parts of the mounting element formed by the slit, such that the mounting element is folded double at the slit for transport purposes.
According to another embodiment of the present invention, the other foils are flexible, allowing the element to be pressed laterally into abutment between the adjacent sheet parts that define said channels, for transportation purposes. Pieces of connecting tape are placed on the second main surface so as to bridge the butt loins and therewith stabilise the mounting element.
A method of producing the floor element is by disposing a group of separate, parallel sheet portions that are mutually parallel and spaced at a chosen distance apart in one plane, fixing a stretched flat foil of heat transferring material on one main surface of the group of sheet portions, subsequently reducing the distance between the sheet portions to a chosen value, and applying a piece of holding foil on the opposite main surface of the group to define a corresponding maximum channel width in the mounting element. The width of the heat transfer layer between mutually adjacent sheet portions is chosen to allow the heat transfer layer to extend essentially around half the circumference of a conductor placed in the channel at the same time as the conductor is accommodated between both main surfaces of the element.
The method may further include cutting through the element from one main surface provided with the holding foil, up to the heat transfer foil and then folding the element double at the cut such that the heat transfer foil forms a hinge means.
Additionally, the method may include the step of applying the flexible holding foils and then bringing the sheet portions generally into abutment with one another, and applying pieces of connecting tape to the other main surface of the group of sheet portions so as to stabilise the element, and cutting the pieces of connecting tape prior to mounting the heat transporting conductor in the mounting element.
A method of producing the floor element is set forth in the independent method Claim.
Further embodiments of the invention will be evident from the accompanying dependent Claims.
The inventive floor element can be considered to have a basic structure of the kind disclosed in SE-B468 057, although with the exception that instead of using a relatively thick and rigid aluminium plate as in the solution taught by SE-B468 057, it is proposed in accordance with the invention that the heat-distributing layer of material shall consist of a readily flexible foil that has a thickness of less than 200 &mgr;m.
By ensuring that the heat-emitting foil has an adapted free width between mutually adjacent strip-like parts of the sheet supporting the floor element, it is possible to press the heat transferring conductor down between said strips, and to enable the strips to be pressed against opposing sides of the conductor via the aluminium foil, said foil embracing generally half the circumference of the conductor, and said conductor being received between both main surfaces of the sheet. The sheet portions can be fixed mutually either before or after having clamped the conductor.
The use of a relatively thin and easily flexed aluminium foil in accordance with the invention enables the size of the floor element to be readily adapted, by cutting the foil in the channel defined by respective strip-like portions. The slit o
Friedman Carl D.
Jacobson & Holman PLLC
Slack Naoko N
LandOfFree
Floor element for a floor heating or cooling system, and a... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Floor element for a floor heating or cooling system, and a..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Floor element for a floor heating or cooling system, and a... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3256082