Stock material or miscellaneous articles – Pile or nap type surface or component – Composition of pile or adhesive
Reexamination Certificate
2000-09-01
2003-04-08
Juska, Cheryl A. (Department: 1771)
Stock material or miscellaneous articles
Pile or nap type surface or component
Composition of pile or adhesive
C428S095000, C428S096000
Reexamination Certificate
active
06544621
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to floor covering products, such as carpets, carpet tiles, floor mats, and the like, which comprise very specific antimicrobial adhesive latex formulations therein. Such formulations comprise, as the only antimicrobial active ingredients, certain inorganic antimicrobial compounds, such as, preferably, silver-containing ion-exchange, glass, and/or zeolite compounds. Such latexes exhibit excellent adhesive and antimicrobial qualities and, since they do not contain any added organic bactericides (and thus no bactericide VOCs), do not release any such organic bactericides upon exposure to high processing temperatures.
DISCUSSION OF THE PRIOR ART
All U.S. Patents listed below are herein entirely incorporated by reference.
There has been a great deal of attention in recent years given to the hazards of bacterial contamination from potential everyday exposure. Noteworthy examples of such concern include the fatal consequences of food poisoning due to certain strains of
Eschericia coli
being found within undercooked beef in fast food restaurants; Salmonella contamination causing sicknesses from undercooked and unwashed poultry food products; and illnesses and skin infections attributed to
Staphylococcus aureus, Klebsiella pneumoniae,
yeast, and other unicellular organisms. With such an increased consumer interest in this area, manufacturers have begun introducing antimicrobial agents within various household products and articles. For instance, certain brands of polypropylene cutting boards, liquid soaps, etc., all contain antimicrobial compounds. The most popular antimicrobial for such articles is triclosan. Although the incorporation of such a compound within liquid or certain polymeric media has been relatively simple, other substrates, including the surfaces of textiles and fibers, have proven less accessible. Furthermore, triclosan includes chlorine ions which, upon dissociation, may release to the substrate surface. Such ions are potentially hazardous to humans, due to skin irritation upon contact, as well as within environmental effluents, and the like. Additionally, harmful microbes have shown, on occasion, an ability to develop an immunity to the bactericidal properties of triclosan. Also, surface treatments with triclosan have proven ineffective as well since such compounds are highly water soluble and are easily removed upon exposure to sufficient amounts of moisture. There thus remains a long-felt need to provide a short- and long-term effective, durable, and long-lasting antimicrobial agent for surface utilization within adhesive latex formulations. Of additional importance is the need to provide such formulations which, upon exposure to high temperature processing conditions (either in the production of or incorporation of such formulations within other applications, such as carpet backing, and the like) do not require the presence of organic bactericides which may result in the release of a certain volatile organic content (VOC) upon such high temperature processing.
One proposed latex has utilized metal ions for bactericidal properties, but also requires the presence of an organic bactericide to provide the desired level of antimicrobial activity. U.S. Pat. No. 5,736,591 to Dunn teaches the addition of certain metal ions, including copper, silver and any other Group Ib metals, as salts (such as silver nitrate, silver perchlorate, and the like) to latex formulations in combination with such organic compounds as 2-methyl-4, 5-trimethylene-4-isothiazolin-3-one, to provide a bactericidal latex. No mention is made anywhere within this patent of the availability, much less, the capability of silver-based ion-exchange or zeolite compounds as potential antimicrobial agents. Nor is there any discussion of the ability of any such silver-based compounds providing effective antimicrobial activity without the need for any added organic bactericides.
Such specific silver-containing inorganic microbiocides (e.g., ion-exchange and/or zeolite compounds) have recently been developed and utilized as antimicrobial agents on and within a plethora of different substrates and surfaces. In particular, such microbiocides have been adapted for incorporation within plastic compositions and fibers in order to provide household and consumer products which inherently exhibit antimicrobial characteristics. Although such silver-based agents provide excellent, durable, antimicrobial properties, to date no teachings exist which teach or fairly suggest the presence of such inorganic compounds within adhesive latex formulations. This is not surprising considering the difficulties which have been noted in attempting such an introduction of these large molecular weight, bulky, compounds within polymer latex formulations to begin with. For instance, such inorganic compounds may interfere with the desired adhesives qualities of the latex if and when such large molecules are present at the surface. One would anticipate that a large surface accumulation of such bulky compounds would reduce the potential surface-to-surface interaction required for the adhesive formulation to function properly. Furthermore, it has been found that the addition of such bulky compounds within already-compounded latex formulations is extremely difficult. The resultant composition generally exhibits discrete areas of concentrated, dark-colored, antimicrobial compound. Not only does this result in an unpleasing aesthetic appearance, but such a latex, being nonuniform in dispersion as well, may exhibit uneven adhesive properties, too. Although these problems exist, there is a desire to incorporate such silver-based inorganic antimicrobial agents within adhesive latex formulations in order to provide a regenerable, highly effective, long-lasting antimicrobial latex at, on, or within various different articles.
Of importance in this situation, such a novel adhesive latex permits an effective manner of providing a “cleaner” floor covering article. Generally, the main concern with such articles is the difficulty in effectively and throughly cleaning and/or disinfecting the area at or above which the face fibers are attached to the primary backing fabric. As most vacuum cleaners, steam cleaners, etc., do not reach to such an area, this portion of a floor covering article is generally the most susceptible to microbe accumulation and growth. Hence, the incorporation of an effective latex is necessary to provide microbe control in such inaccessible locations. In the past, antimicrobial latex formulations have been utilized for such a purpose. However, such as in U.S. Pat. No. 5,736,591, such formulations have required the presence of organic bactericides which exhibit problems during production. Most notably, the amount incorporated within such floor covering latexes is quite high due to the invariable loss of a substantial amount during high temperature processing during article production. Not only does this require greater cost to the consumer to account for this loss of bactericide, but this also results in the release of volatile organic compounds (VOCs) potentially into the atmosphere. Thus, there is a need to provide floor coverings comprising non-organic bactericide containing adhesive latex formulations which still provide effective adhesion and antimicrobial activity. Unfortunately, to date, no such floor covering article, or antimicrobial adhesive latex for that matter, has been accorded the carpet or floor mat industry by the pertinent prior art.
DESCRIPTION OF THE INVENTION
It is thus an object of the invention to provide a floor covering product which exhibits antimicrobial activity in the portion where the face fabric is attached to its primary backing fabric and which does not comprise any organic bactericides as VOCs. Another object of the invention is to provide an antimicrobial adhesive latex exhibiting a substantially uniform appearance and possessing no VOC content.
Accordingly, this invention encompasses a floor covering article comprising at least: a face fiber portion,
Lever John G.
Schuette Robert L.
Sellman, Jr. N. David
Juska Cheryl A.
Milliken & Company
Moyer Terry T.
Parks William S.
LandOfFree
Floor covering articles comprising antimicrobial adhesive... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Floor covering articles comprising antimicrobial adhesive..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Floor covering articles comprising antimicrobial adhesive... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3105334