Floating pump assembly

Pumps – Buoyantly supported

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C417S040000, C417S234000, C210S219000, C210S220000, C261S025000, C261S093000

Reexamination Certificate

active

06755623

ABSTRACT:

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention is directed to a floating pump assembly preferably including a high capacity flow pump supported on a floatation assembly in an at least partially submerged location and in a predetermined orientation which substantially eliminates or at least minimizes the tendency of the floatation assembly to become unstable at least in terms of being further submerged into the body of water on which it is floating, during the activation and operation of the pump assembly.
2. Description of the Related Art
The general concept of a floating pump has been known and utilized for a variety of different applications for many years. Such applications include, but are not limited to, drainage, irrigation, transfer pumping, water control at excavation sites, dredging, and others. In use, conventional pumps of the type referred to herein are frequently connected to some type of primary mover or power supply generally including a drive motor. The drive motor is connected in driving relation to a propeller, drive shaft or like mechanism which serves to create a flow of liquid from an inlet location to an outlet location. The transfer of water or any liquid being treated is thereby accomplished as intended.
By way of example only, floating pumps are commonly used in water treatment facilities as down-flow mixers or water aeration devices. As such, the pump housing, including the rotationally driven pump components therein, are typically disposed on some type of floating structure. As in most emergency and industrial applications, the pump housing and accordingly the path of fluid flow created by the operation of the pump are normally vertically oriented. In such a vertical orientation the drive motor or other power generating facility is located above but generally connected to the pump housing so that the power takeoff of the drive motor and the drive elements or working components thereof, are directly connected. Except in situations where the path of fluid flow is directed from an upper level of a body of water down towards the bottom or basin of the body of water, such as in down flow mixtures and certain aeration devices, the path of fluid flow is normally directed in the opposite direction. This is of course typical when floating pumps are used in a drainage application during heavy rain fall or in more common agriculture applications, such as for irrigation and the like.
However, regardless of the specific utilization of the floating pump, the physical structure and location of the power supply, operative components and floatation assembly are such as to typically maintain the pump housing in a vertical orientation. In such a vertical orientation, the power assembly used to drive the operative pump components is secured to the pump housing in a non-submerged location or is otherwise required to be maintained in an enclosed or sealed casing.
Accordingly, upon activation and continued operation known pump assemblies are frequently disoriented by being tilted and/or more deeply submerged in the body of water in which they are floating. Such instability results from the necessity of the floatation assembly to absorb the thrust force of the pump and the weight of the water as it fills the pump interior and the adjacent portions of an associated discharge or delivery conduit. As a result, the dimension and/or configuration of the floatation device or assembly included in many conventionally structured floating pumps must be significantly increased and/or enlarged. Indeed, the disadvantages of conventional floating pumps which include an oversized supporting float structure are significant, and as a result, the specific applications for which such floating pumps may be utilized may be limited.
Obviously, the above is not true in all uses for floating pumps. However, in many situations it is important to maximize the flow capacity of the floating pump, especially when attempting to transfer or otherwise treat large quantities of water. In such situations it would be extremely beneficial to have the ability of a unitized or self-contained floating pump assembly including a pump housing disposed in a predetermined orientation and capable of extremely large flow capacities. Such an improved floating pump assembly could then be driven by a heavy duty power assembly such as, but not limited to, an internal combustion engine. In such a preferred pump assembly, the power assembly could be mounted on a floatation assembly of compact size and dimension and effectively accomplish a forced flow of significantly large quantities of water through an associated, properly oriented pump housing without encountering the instability disadvantages of the type encountered by conventional floating pumps.
Further, in order to overcome many, if not all, of the known problems and disadvantages commonly associated with conventional floating pump assemblies of the general type set forth above, it is preferred that the pump housing, associated drive assembly and resulting path of fluid flow be disposed in the aforementioned predetermined orientation. The preferred predetermined orientation of the pump housing is such as to eliminate the need for an oversized floatation assembly while minimizing the tendency of the pump assembly to submerge deeper into the body of water and below the surface on which the floatation assembly is intended to float. The predetermined orientation of the pump housing, fluid drive assembly and outlet or discharge of the pump housing, would thereby serve to maintain a forced path of water flow through the pump housing. Importantly, the direction of the path of fluid or water flow would eliminate or significantly reduce any reactive thrust force being exerted on the floatation assembly which would cause its instability. Therefore, during the operation of the fluid drive assembly, as well as the transition thereof from a non-operative mode into an operative mode, any tendency of the floatation to be disoriented, such as by being forced into a deeper submerged position would be substantially eliminated or at least significantly reduced.
An improved floating pump assembly of the type generally set forth above, would therefore allow for the utilization of a more compact and manageable floatation assembly dimensioned and otherwise structured to support and maintain a heavy duty power supply, such as the aforementioned internal combustion engine, in an intended floating orientation. However, the size and/or configuration of the floatation assembly of the present invention would not have to be increased or expanded to overcome the tendency of the pump to be re-oriented into a more deeply submerged position in the body of the water, as is common during the start-up and operation of conventional floating pump structures.
SUMMARY OF THE INVENTION
The present invention is directed to a floatation assembly of the type structured to deliver a high capacity fluid flow thereby enabling it to serve as an effective and efficient water treatment or handling facility in a variety of different applications. In addition, the floatation assembly of the present invention is compact as well as being self-contained to the extent of having a pump housing, and the pumping components associated therewith, as well as a power assembly mounted on a single, relatively compact flotation assembly. The flotation assembly can therefore be efficiently transported from one site to another and operatively positioned on the body of water to be treated in a quick and efficient manner.
In a conventional application of a floating pump assembly, the pump housing and power assembly are typically assembled in a single housing or casing and mounted on a floating structure in a generally vertical orientation. As such, the inlet of the pump housing is submerged and the outlet thereof is located above the water surface for appropriate connection to some type of transfer conduit or the like. Therefore, conventional floating pumps of the type described herein are normally oriented such th

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Floating pump assembly does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Floating pump assembly, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Floating pump assembly will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3365686

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.