Electrical connectors – With insulation other than conductor sheath – Plural-contact coupling part
Reexamination Certificate
2001-05-31
2003-01-14
Feild, Lynn D. (Department: 2839)
Electrical connectors
With insulation other than conductor sheath
Plural-contact coupling part
C439S248000, C439S856000
Reexamination Certificate
active
06506081
ABSTRACT:
BACKGROUND OF THE INVENTION
Embodiments of the present invention generally relate to electrical connector assemblies. At least one embodiment generally relates to a floating connector assembly movably mounted to a support structure permitting connection even when the supporting structure are misaligned. At least one embodiment of the present invention generally relates to a staggered contact pattern to afford a compact connector envelope while maintaining large contacts and wire gauge.
Today, connector assemblies are utilized in a variety of applications and fields. Exemplary fields including, but are not limited to, telecommunications, internet applications, personal computers and the like. Exemplary applications include, but are not limited to, connecting components, boards and cards in computers, servers, networks and the like. One exemplary style of connection involves interconnecting rack and panel assemblies, also referred to as “drawer connectors.”
Often, connector assemblies are utilized with a plug connector mateable with a receptacle connector, each of which is mounted to some form of support structure. By way example only, one of the plug or receptacle connectors may be mounted to a subassembly, component, card, panel or circuit board, while the other connector may be mounted to a bulkhead or rack assembly that holds the card, panel, board, component or subassembly. Alternatively, the plug and receptacle connector halves may both be mounted to panels, cards or circuit boards. As a further exemplary alternative, one connector half may be provided on a rack, while the other connector half may be provided on a panel. The rack assembly may have slots or carriages that receive panels, cards or boards carrying signal and/or power components. The slots or carriages may loosely receive the panel, card or board and not necessarily guide a panel, board or card in a close tolerance along a slot or carriage path. The loose tolerance within the slot or carriage permits the board, card or panel to move slightly in the lateral and vertical directions transverse to the length of the slot or carriage path. The panels, cards and boards may also become slightly turned when loaded into the slot or carriage. Consequently, when panels, cards or boards are slid into a rack assembly, the connector on the panel, card or board may not precisely align with the mating connector on the rack assembly.
Heretofore, misalignment has been addressed by mounting the connector assemblies to the rack assembly via an intermediary separate mounting apparatus. The mounting apparatus permits the connector mounted on the rack assembly to move relative to the rack assembly within a limited tolerance. The limited motion offered between the rack assembly and a connector thereon may also be referred to as “float”. The connector mounted to the rack assembly may be a plug, a receptacle or any other type of connector component. The connector mounted to the panel, card or board is directly, fixedly and rigidly secured in a non-floating arrangement. The rigid connection of the connector to a panel, card or board is simply referred to as “board mounted”.
However, conventional mounting apparatus that permit float between a connector and a rack assembly require additional hardware, in addition to, and separate and apart from, the connector housing. For instance, the mounting apparatus may include one or more brackets with oversized holes provided therein. Nuts and bolts or screws secure the bracket to the connector and to the rack assembly. The holes through the bracket are larger than the bolts or screws to permit movement therebetween, thereby affording float. In addition, conventional mounting apparatus often utilize springs to bias the connector to one extreme position along a float range, while still permitting the connector to move. The additional hardware of the brackets, springs, nuts, bolts and screws in rack and panel or drawer connections is disadvantageous.
Moreover, the power and signal requirements of connector assemblies continue to grow more demanding, as does the requirement for smaller and more compactly designed contact layouts. Conventional connectors that utilize multiple contacts typically arrange the contacts in a pattern, in which the contacts are aligned next to one another with a set, uniform amount of insulated housing material provided between adjacent contacts. Exemplary patterns include contacts arranged in rows and columns. The contacts in each row are provided in cavities that are separated by the insulated housing material of a desired thickness. The contact cavities in each column are also separated by insulated housing material of a desired thickness.
In conventional contact pattern layouts, the overall envelope of the connector assembly is defined in part by the number of cavities, the dimensions of each cavity, and the number and size of the gaps between cavities in each row and column. For example, the width of a conventional contact envelope is at least equal to the width of each cavity times the number of cavities in one row plus the width of each insulated space between cavities times the number of spaces between the cavities. Similarly, the height of a conventional contact envelope is at least equal to the cavity height times the number of cavities in a column plus the thickness of the spaces between cavities in a column times the number of spaces in a column. The contact size in part determines the height and width of the cavities, as well as determining the size or gauge of wire connectable thereto.
In the past, in order to reduce the size of the connector envelope, it was necessary to use smaller contacts and smaller gauge wire. The contact size and wire gauge limit the power delivery capability of the connector. Hence, in high-power applications, it is desirable to maintain the contact and wire size as large as possible. It is also preferable to provide contact layouts that have high heat dissipation properties, such as for use in high current applications.
In addition, past connector designs have attempted to minimize the connector envelope by using multiple contact shapes and configurations within a single connector housing. However, it was necessary to develop separate tooling for each contact shape and configuration.
A connector assembly is needed that affords self-alignment between the receptacle and plug when the support structures are mis-aligned, without requiring separate connector mounting apparatus. A contact pattern is needed that is compact, yet is able to afford larger contacts connectable to a large gauge wire, thereby affording high power capacity and beneficial heat dissipating qualities. A connector design is also needed that affords symmetric mating areas that allow one contact design to be used to populate all positions in the connector housing.
The goals and objectives of at least certain embodiments of the present invention are to satisfy the needs and overcome the problems discussed above, as well as additional problems that will become apparent from the foregoing explanation and following detailed description, claims, abstract and drawings.
SUMMARY OF THE INVENTION
A connector assembly is provided that is floatably mounted to a mounting structure. The connector assembly includes a mounting structure having a connector opening therein that includes an inner contour. A connector housing is provided with peripheral surfaces having an outer contour shaped to loosely fit in the inner contour of the mounting structure. The connector housing is slidable inserted into the opening in the mounting structure. A chamber is provided in the connector housing that is adapted to securely retain at least one contact. At least one latch beam is formed with the connector housing. The latch beam engages the opening in the mounting structure and floatably secures the connector housing to the opening in the mounting structure. A float gap is provided between the inner contour of the opening and the outer contour of the connector housing to enable relative movement therebe
Blanchfield Michael Allen
Brown, III John Bossert
Conner Troy Everette
Feild Lynn D.
Tyco Electronics Corporation
Zarroli Michael C.
LandOfFree
Floatable connector assembly with a staggered overlapping... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Floatable connector assembly with a staggered overlapping..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Floatable connector assembly with a staggered overlapping... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3072651