Flip-chip sub-assembly, methods of making same and device...

Active solid-state devices (e.g. – transistors – solid-state diode – Housing or package – Multiple housings

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C257S701000, C257S778000

Reexamination Certificate

active

06831355

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to electronic modules, devices, sub-assemblies and methods for making same. More particularly, this invention relates to electronic modules, devices and sub-assemblies with an LCD display and methods for making same. More specifically, although of course not solely limiting thereto, this invention relates to electronic devices, modules and sub-assemblies containing an LCD display element with flip-chip bonded semiconductor integrated circuits.
BACKGROUND OF THE INVENTION
The use of semiconductor integrated circuits, especially in electronic devices, have greatly proliferated since their invention in early 1960's. Traditionally, semiconductor integrated circuits are provided and used in packaged forms with a semiconductor chip bonded to a lead-frame header or other package or substrate by find gold or aluminium wires that loop from contact pads disposed around the periphery of the circuitry surface of the semiconductor chips.
In order to alleviate the adverse parasitic effects as well as fulfilling the industry-wide demand for high lead counts and small foot prints, the “flip-chip” method or technology for bonding a semiconductor integrated circuit chip to a substrate was introduced. The flip-chip bonding technology has been described in many publications such as, for example, U.S. Pat. No. 3,429,040 issued to L. F. Miller in 1969 and many other subsequently published US patent specifications. The conventional way to bond a semiconductor integrated circuit chip onto a substrate is by firstly flipping the semiconductor chip over so that the contact pads disposed on the top peripheral surface of the semiconductor chip is directly opposite the surface of a substrate member on which there are formed a corresponding set of contact pads for making interconnections between the semiconductor chip and the substrate member. The corresponding contact pads on the integrated circuit chip and the substrate member are then aligned and subsequently connected together to complete the electrical connection. Typically, the external electrodes or contact pads on an integrated circuit chip are provided with solder balls or bumps to ensure reliable connection and the components are connected by appropriate connection methods or means such as, for example, reflow soldering.
However, with the ever increasing demand for additional and improved performance from electric devices, more and more integrated circuits are required on an electronic device and the cost-effectiveness or benefits of the conventional flip-chip bonding technology begin to decline.
For example, in the early versions of mobile telephones or hand-held games, a single integrated circuit display driver chip may be sufficient to drive the entire display screen. However, to fulfil the ever increasing demand for additional features to be available for display and the ever increasing demand for higher resolution of such display features, a plurality of integrated circuit display drivers may be required for a single display means which is typically, but not limited to, an LCD display screen.
Likewise, with the ever increasing demand for further miniaturization of hand-held electronic devices such as, for example, mobile phones or hand-held computers, coupled with the ever increasing operating speed or frequencies of such devices, it is a clear trend that more and more integrated circuit chips connected by non-wire bonding means will be required by such electronic devices. On the other hand, it is noted that the yielding rate or productivity of electronic devices, modules or sub-assemblies declines significantly with the increasing number of “flip-hip” bonded integrated circuit chips. Hence, it will be highly desirable if there can be provided electronic devices, modules or sub-assemblies containing a plurality of integrated circuitry chips connected by the non-wire bonding means while alleviating the adverse consequences associated with the conventional flip-chip bonding technologies or methods. Similarly, it will be highly desirable if there can be made available electronic devices, modules including a plurality of integrated circuit chips connected by non-bonding wire means while alleviating the known adverse consequences of conventional flip-chip technology and method.
OBJECT OF THE INVENTION
Accordingly, it is an object of the present invention to provide electronic devices, modules and sub-assemblies including a plurality of semiconductor integrated circuit chips connected by non-bonding wire connection means. Likewise, it is also an object of the present invention to provide methods for assembling electronic sub-assemblies, modules and devices including a plurality of semiconductor integrated circuit chips connected by non-wire bonding connection means, thereby enjoying the characteristic benefits afforded by the flip-chip bonding method while alleviating the adverse consequences or shortcomings of conventional flip-chip technologies.
More specifically, although of course not solely limiting thereto, it is also an object of the present invention to provide LCD display modules, sub-assemblies or electronic devices incorporating same with a plurality of semiconductor integrated circuit chips connected by non-wire bonding means to fulfil the demand for ever increasing degree of complexity of the display features and/or higher resolution to be expected by the consumers or the general public. At a minimum, it is an object of the present invention to provide the public with a useful choice of electronic modules, sub-assemblies, electronic devices incorporating same and method for making same.
SUMMARY OF THE INVENTION
Accordingly, it is a first aspect of the present invention to provide an electronic device including a multi-chip die and a substrate member, said multi-chip die includes a plurality of integrated circuit chips which are integrally formed on said multi-chip die as a unitary member, each said integrated chip includes a plurality of electrodes for making external electrical contacts, said substrate member includes a circuit of a pre-determined pattern and a plurality of electric contacts disposed for making corresponding electrical connections with the electrodes of said integrated chips of said multi-chip die, said plurality of integrated circuit chips of said multi-chip die being connected as a unitary member to said substrate member.
According to a second aspect of the present invention, there is provided an electronic module or sub-assembly including a multi-chip die and a substrate member, said multi-chip die includes a plurality of integrated circuit chips which are integrally formed on said multi-chip die as a unitary member, each said integrated chip includes a plurality of electrodes for making external electrical contacts, said substrate member includes a circuit of a pre-determined pattern and a plurality of electric contacts disposed for making corresponding electrical connections with the electrodes of said integrated chips of said multi-chip die, said plurality of integrated Circuit Chips of said multi-chip die being connected as a unitary member to said substrate member.
According to a third aspect of the present invention, there is provided a method of connecting a plurality of integrated circuit chips to a substrate member, wherein said substrate member includes a predetermined circuit pattern with a plurality of contact pads, said method includes:
selecting a plurality of integrated circuit chips from a processed semiconductor wafer,
removing said plurality of integrated circuit chips from said wafer as an unitary member,
aligning the electrodes on said plurality of integrated circuit chips corresponding with said plurality of contact pads on said substrate member,
electrically connecting said electrodes with said contact pads.
Preferably, said plurality of integrated circuits on said multi-chip die being electrically isolated from each other before removal from the semiconductor wafer on which said integrated circuit chips are formed.
Preferably, said multi-chi

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flip-chip sub-assembly, methods of making same and device... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flip-chip sub-assembly, methods of making same and device..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flip-chip sub-assembly, methods of making same and device... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3280631

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.