Flip chip molded/exposed die process and package structure

Semiconductor device manufacturing: process – Packaging or treatment of packaged semiconductor – Metallic housing or support

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C438S118000

Reexamination Certificate

active

06660565

ABSTRACT:

BACKGROUND OF THE INVENTION
(1) Field of the Invention
The invention relates to the fabrication of integrated circuit devices, and more particularly, to a method of creating a molded package structure for flip chips using a one step mold compound injection process.
(2) Description of the Prior Art
High density interconnect technology frequently leads to the fabrication of multilayer structures in order to connect closely spaced integrated circuits with each other. A single substrate serves as an interconnect medium to which multiple chips are connected, forming a device package with high packaging density and dense chip wiring. The metal layers that make up the interconnect network and the via and contact points that establish connections between the interconnect networks are separated by layers of dielectric (such as polyimide) or insulating layers. In the design of the metal interconnects, strict rules must be adhered to in order to avoid problems of package performance and reliability. For instance, the propagation directions of primary signals must typically intersect under angles of 90 degrees to avoid electrical interference between adjacent lines. It is further required that, for considerations of photolithography and package reliability, planarity is maintained throughout the construction of multi-layer chip packages. Many of the patterned layers within an interconnect network form the base for subsequent layers, their lack of planarity can therefore have a multiplying effect of poor planarity on overlying layers.
Quad Flat Packages (QFP) have in the past been used to create surface mounted, high pin count integrated packages with various pin configurations. The electrical connections with these packages are typically established by closely spaced leads that are distributed along the four edges of the flat package. This limits the usefulness of the QFP since a high I/O count cannot be accommodated in this manner. To address this problem, the Ball Grid Array (BGA) package has been created whereby the I/O points for the package are distributed not only around the periphery of the package but over the complete bottom of the package. The BGA package can therefore support more I/O points, making this a more desirable package for high circuit density with high I/O count. The BGA contact points are solder balls that in addition facilitate the process of flow soldering of the package onto a printed circuit board. The solder balls can be mounted in an array configuration and can use 40, 50 and 60 mil spacings in a regular or staggered pattern.
Where circuit density keeps increasing and device feature size continues to be reduced, the effect of the interconnect metal. within the package becomes relatively more important to the package performance. Factors that have a negative impact on circuit performance, such as line resistance, parasitic capacitance, RC-delay constants, crosstalk and contact resistance, have a considerable impact on the package design and its limitations. A significant power drop may for instance be introduced along the power and ground buses where the reduction of the interconnect metal does not match the reduction in the size of the device features. Low resistance metals (such as copper) are therefore finding wider application in the design of dense semiconductor packages.
Increased input/output (I/O) requirements combined with increased performance requirements for high performance Integrated Circuits (IC's) has led to the development of Flip Chip packages. Flip chip technology fabricates bumps (typically Pb/Sn solder) on A1 pads and interconnects the bumps directly to the package media, which are usually ceramic or plastic based. The flip-chip is bonded face down to the package through the shortest paths. These technologies can be applied not only to single-chip packaging, but also to higher or integrated levels of packaging, in which the packages are larger, and to more sophisticated package media that accommodate several chips to form larger functional units.
The flip-chip technique, using an area array, has the advantage of achieving the highest density of interconnection to the device combined with a very low inductance interconnection to the package. However, pre-testability, post-bonding visual inspection, and Temperature Coefficient of Expansion (TCE) matching to avoid solder bump fatigue are still challenges. In mounting several packages together, such as surface mounting a ceramic package to a plastic board, the TCE mismatch can cause a large thermal stress on the solder lead joints that can lead to joint breakage caused by solder fatigue from temperature cycling operations.
Prior Art substrate packaging uses ceramic and plastic Ball Grid Array (BGA) packaging. Ceramic substrate packaging is expensive and has proven to limit the performance of the overall package. Recent years have seen the emergence of plastic BGA packaging, this packaging has become the mainstream design and is frequently used in high volume BGA package fabrication. The plastic substrate BGA package performs satisfactorily when used for low-density flip-chip IC's. If the number of pins emanating from the IC is high, that is in excess of 350 pins, or if the number of pins coming from the IC is less than 350 but the required overall package size is small, or if the chip power dissipation is high (in excess of 4 Watts per chip), the plastic structure becomes complicated and expensive.
It is therefore the objective of packaging ball grid array and flip-chip packages that the chip is mounted on the surface of a package substrate. The contact points of the flip-chip Integrated Circuit (IC) device make contact with contact points in the top surface of the Ball Grid Array (BGA) substrate, the substrate re-distributes (fan-out) the flip-chip IC contact points. The lower surface of the substrate has the contact point (balls) that are connected to the surrounding circuitry and that form the interface between the BGA/flip-chip IC contact balls and this surrounding circuitry. It must thereby also be understood that the original contact balls of the flip chip IC device are encased in a material (for instance epoxy) for protection of these balls. The epoxy is encased between the lower surface of the flip-chip IC device and the upper surface of the BGA substrate. This epoxy layer is referred to as underfill since it is filled in under the flip-chip device. The underfill is normally put in place using a separate process of dispensing epoxy liquid under the die followed by curing of the epoxy. IC devices that are packaged using a flip chip and that have requirements of high power dissipation normally require a heatsink that is attached to the surface of the flip chip die. Only the backside of the flip chip is exposed and is suitable for the attachment of the heatsink. Since the heatsink is only attached to the (backside) surface of the IC device, great care must be taken not to induce stress on the backside of the IC device. If too much force or stress is used during the process of attaching the heatsink to the die, the die can easily crack or break. If on the other hand a larger surface area is created that is parallel to the surface of the backside of the IC device, the stress can be significantly reduced.
FIG. 1
shows a cross section of a typical flip chip package with underfill and a heatsink. The IC
10
enters the process as a separate unit with the contact points (balls
18
) attached to the bottom of the chip
10
. The IC
10
is placed in a cavity
22
that is formed by the spacers
14
between the heatsink
16
and the substrate
12
. While the chip
10
is contained in cavity
22
, the underfill
21
under the surface of the IC chip
10
is injected or filled by capillary action. The balls
20
connected to the lower surface of the substrate
12
make contact with the surrounding circuitry. It should be noted in
FIG. 1
that the sides of the underfill
21
are sloping such that the physical contact between the underfill
21
and the substrate
12
is extended beyond the d

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flip chip molded/exposed die process and package structure does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flip chip molded/exposed die process and package structure, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flip chip molded/exposed die process and package structure will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3098231

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.