Flextensional resonant pipe projector

Communications – electrical: acoustic wave systems and devices – Signal transducers – Underwater type

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C367S157000, C367S162000, C367S165000, C310S337000

Reexamination Certificate

active

06567343

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to acoustic projectors, especially projectors for use in military and civilian sonar having more bandwidth than previous folded shell acoustic projectors.
BACKGROUND OF THE INVENTION
Military and civilian sonar systems require compact, light weight, high power, efficient, wide bandwidth acoustic projectors whose performance is stable with depth and linear with drive voltage levels.
Canadian Patent 1,319,414 by Bryce Fanning et al that issued on Jun. 22, 1993 describes one type of a free-flooding piezoelectric driven resonate-pipe projector (RPP) with vent holes in the pipe walls to broaden the response of certain cavity resonances and to increase the response between those resonances. The drive unit is a radially-poled lead zirconate-titanate cylinder with aluminum pipes extending into the center of the piezoelectric drive unit, the pipes being mechanically coupled to the drive unit. Accomplishing the necessary acoustic coupling between the drive unit and pipes requires a close mechanical fit to couple the drive unit to the pipes. These resonant pipe projectors are partially free-flooding and can be operated at extreme depths because the drive unit is highly resistant to hydrostatic loading. However, the bandwidth is small and they are expensive to manufacture due to the close tolerances required.
Flextensional projectors are amongst the best ones presently available to meet military and civilian sonar systems requirements, one known flextensional projector being the barrel stave type. The barrel stave projector (BSP) is a compact, low frequency underwater sound source which has applications in low frequency active (LFA) sonar and in underwater communications. In one known BSP design, such as described in U.S. Pat. No. 4,922,470 by G. McMahon et al, a set of curved bars (staves) surround and enclose a stack of axially poled piezoelectric rings located between end walls to which the staves are attached. The staves act like a mechanical transformer and help match the impedance of the transducer to the radiation impedance of the water. Axial motion of the stave ends is transformed to a larger radial motion of the stave midpoints. This increases the net volume velocity of the water, at the expense of the applied force, and is essential for radiating effectively at low frequencies.
This known BSP projector has slots between the staves which are required to reduce the hoop stiffness and achieve a useful transformer ratio. However, these slots must be waterproofed by a rubber membrane (boot) stretched tightly and glued with epoxy around the projector. This boot also provides effective corrosion protection for the A
1
staves. However, the variation in performance with depth of the BSP is suspected to depend in part on the boot. At increasing depths, hydrostatic pressure pushes the boot into the slots causing the shell to stiffen tangentially, increasing the resonance frequency, and causing an increasing loss of performance. This depth sensitivity of a barrel stave projector can be reduced somewhat by reinforcing the boot over the slots. It is also possible to pressure compensate the BSP with compressed air or other gas. The pressurized gas increases the stiffness of the projector and hence raises its resonant frequency.
The slots in the BSP, as a secondary effect, provide a nonlinearity in the response of the projector to hydrostatic loading. The staves will deflect inwards together under increasing hydrostatic loading (assuming no pressure compensation) since the projector is air filled. Depending on the thickness and stiffness of the rubber, it is reasonable to expect that as the slots close at great enough depths, that closure of the slots due to increasing depth will force the boot back out of the slots. The projector will now be very stiff and resistant to further effects of depth until the crush depth of the now, effectively, solid shell is reached. This provides a safety mechanism which may save the projector in case an uncompensated BSP is accidentally submerged very deep or a pressure compensation system runs out of air.
Variants of this known BSP have been built to optimise light weight, wider bandwidth, low frequency, high power, and improved electroacoustic efficiency. Efficiency is an especially critical parameter for the high power versions of the BSP because the driver is well insulated from the water thermally. The boot's relatively poor thermal conductivity contributes to the difficulty in cooling the BSP.
Overhaul of a barrel stave projector usually involves a costly boot replacement.
The inside surfaces of the (eight) staves of these BSPs are machined individually from bar stock on a numerically controlled (NC) milling machine. The staves are then mounted together on a fixture and the outside surfaces are turned on a tracer lathe. The machining and handling costs are such that the staves are the most expensive parts of the BSP. These BSPs are, as a result, both relatively costly to manufacture and maintain.
The BSP suffers from variation of performance with depth caused by water pressure forcing the rubber membrane into the slots between the vibrating staves of the projector unless a pressure compensation system is fitted. The BSP shows nonlinearity of performance versus drive voltage due to effects of the rubber membrane. Thus there could be substantial advantages to accrue if it were possible to develop a one-piece flextensional shell for the BSP that does not require a boot.
A one-piece flextensional shell projector is described by Christopher Purcell in U.S. Pat. No. 5,805,529. The surface of this projector is formed of a thin-walled one-piece inwardly concavely shaped shell containing corrugations (folds) running in the axial direction. This one-piece shell is slotless which eliminates the requirement for a boot.
SUMMARY OF THE INVENTION
It is an object of the invention to provide an acoustic folded shell projector with improved bandwidth.
An acoustic projector, according to one embodiment of the present invention, comprises a pair of spaced apart end walls with an acoustic driver positioned between and connected to the end walls, the driver having smaller cross-sectional dimensions than the end walls, at least one end wall having a tubular pipe waveguide extending outwardly from that end wall, outer ends of the pipes being open, the projector having a thin-walled one-piece inwardly concavely shaped shell containing corrugations running in the axial direction surrounding the driver, the shell being mechanically connected to the end walls.


REFERENCES:
patent: 3848226 (1974-11-01), Perez
patent: 3872421 (1975-03-01), Rogers et al.
patent: 4855964 (1989-08-01), Fanning et al.
patent: 4922470 (1990-05-01), McMahon et al.
patent: 5047997 (1991-09-01), Forsberg
patent: 5062089 (1991-10-01), Willard et al.
patent: 5119343 (1992-06-01), Katahara
patent: 5136556 (1992-08-01), Obara
patent: 5289436 (1994-02-01), Terhune
patent: 5315917 (1994-05-01), Mayzes
patent: 5493815 (1996-02-01), Belser et al.
patent: 5805529 (1998-09-01), Purcell
patent: 1319414 (1988-09-01), None

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flextensional resonant pipe projector does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flextensional resonant pipe projector, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flextensional resonant pipe projector will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3062655

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.