Flexible tool for handling small objects

Data processing: generic control systems or specific application – Specific application – apparatus or process – Robot control

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S188000, C700S189000, C700S245000, C700S254000, C701S023000, C414S226010, C180S008100, C074S490060, C901S029000, C606S057000, C033S645000

Reexamination Certificate

active

06741912

ABSTRACT:

FIELD OF THE INVENTION
The present invention relates to a flexible tool for handling small objects, as well as a method for handling small objects using the flexible tool. The flexible tool comprises one or more mini robots, fast measurements of robot positions and feed back to a computer system controlling the mini robots. The computer system further comprises vision and motion planning.
BACKGROUND OF THE INVENTION
In connection to the increasing miniaturising of almost all high-tech products, handling of small components is getting increasingly important. Many modern high-tech products comprise one or more very small components. There are in general two ways of producing products with very small parts.
One is to make the assembly by hand using a microscope and special handheld tools. Hand held assembly is prone to human errors, and furthermore it is expensive. Due to the cost, human assemblies are often made in countries with low salaries and this seldom has a positive effect on the yield. Furthermore, only smaller numbers of products may be produced in this way.
Another possibility is to construct an assembly machine dedicated to do the task—or one of several tasks. A special machine is rather expensive, and therefore only an option if it is used for high-volume production. It may be very difficult or even impossible to change to new demands when the product or market chances. Furthermore, the time from a new special assembly tool is required to it may be ready for use could easily be far to long. There is therefore a strong need for a possibility of producing small and medium sized number of products using a flexible tool. The tool should be easy to handle and fast to set up for new products.
When handling small components, it is usually very important to handle them with a high degree of precision. A standard robot can usually not handle and position components with a sufficiently high degree of precision. Standard robots use incremental decoders in each joint. Each of the encoders has certain accuracy, and the accuracy must be added to get the accuracy of the robot. When a component is to be picked up or positioned, the computer controlling the robot calculates the movements necessary for doing the task. However, due to the accuracy of the decoders, the calculated position may be several 10
th
of millimetres off.
U.S. Pat. No. 6,024,526 discloses a unit for use in testing semiconductor components. The unit is designed to manipulate either packaged semiconductor components or semiconductor wafers and present them to a test head. The integrated unit includes a positioning mechanism with a tool plate that can be changed to grasp either a semiconductor wafer or a tray of semiconductor components. The tool plate uses a vacuum plate. To hold a tray of semiconductor parts, the vacuum plate has numerous independently operable holes. Each hole is positioned behind one semiconductor component and can be engaged or released separately so that the components can be sorted into separate output bins. To hold a wafer, the tool plate has an extendible tongue member that can be inserted into a stack of semiconductor wafers to pick up one wafer in the stack.
The use of vacuum for holding and moving components is less useful when the components are small, since the precision when picking up and when releasing small components is not sufficient. Furthermore, when using vacuum it is difficult to ensure that the orientation of the components is correct, when picking them up.
It is an object of the present invention to provide a flexible tool for handling small objects with a high degree of precision. The tool being capable of moving objects, positioning the objects at the required position and carrying out one or more operation(s) on the objects with high accuracy.
SUMMARY OF THE INVENTION
According to the present invention, the free-arm robot is used to move the hexapods. For this task, the accuracy is appropriate. When the hexapods are positioned in their docking stations, they are in a very stiff and good controlled environment, and the accuracy can therefore be very high. Furthermore, a telemetric system including vision by CCD-cameras provides real-time information regarding the progress of the handling of the components and feedback to the controller. In other words, the present invention combines the flexibility of the free-arm robot with the high accuracy of the fixed hexapods and real-time feedback from the vision system.
According to a first aspect of the present invention there is provided a flexible tool for handling small objects, the tool comprising:
a free arm robot,
at least one hexapod for handling small objects,
an internal workspace for performing operations on small objects, and
an external workspace for storing small objects during non-operation,
said at least one hexapod(s) being adapted to engage with a small object and to move a small object between said internal workspace and said external workspace, and said free arm robot being adapted to move the at least one hexapod(s).
According to a second aspect of the present invention there is provided a flexible tool for handling small objects, the tool comprising:
a conveyer belt,
at least one hexapod for handling small objects,
an internal workspace for performing operations on small objects, and
an external area for holding small objects during non-operation,
said conveyer belt being adapted to move a small object between said internal workspace and said external area and said at least one hexapod(s) being adapted to perform one or more operation(s) on said small object, when said small object is positioned within said internal workspace.
According to a third aspect of the present invention there is provided a method of handling small objects using a flexible tool, the method comprising the steps of:
moving one or more small object(s) to be handled from an external workspace to an internal workspace of the flexible tool using one or more hexapod(s),
performing operations on said small object(s) in the internal workspace using said hexapod(s).
The system platform is the base of the system. The platform comprises a cube and an external workspace each of which comprises docking stations for up to six hexapods. At each of the 12 docking stations a hexapod may be positioned and locked. When locked, the hexapod is connected to the main computer and to a power supply. A total of up to 11 hexapods may work at the same time in the system.
The platform further comprises six supply units for supplying components to be handled in the cube, or for storage of components that has already been handled. These components can be objects on which operations are carried out and can be tools to be used by the hexapods for carrying out these operations. At each of the supply units, a docking station is provided. The supply units may revolve so as to position new components within reach of the hexapod. The components are positioned with a know orientation in containers easily handled by the hexapod.
The floor of the cube may be one or more extra supply units, or it may be one or more conveyer belts or similar. The floor is adapted to move objects from outside the cube to a position inside the cube, where it may be handled by the hexapods.
A free-arm robot is positioned above the platform and connected to the platform in a stable manner. The robot may reach all the hexapods in any of the positions in the cube of the external workspace. It may move the hexapods from one position to another simply be selecting them and “snap-locking” them onto an adapter at the tip of the robot arm. When the hexapods is positioned at one of the docking stations, it is connected to a power supply and to the main computer by a number of data lines.
The system platform is made of a very stable and solid material, isolating the platform from most vibrations and other undesired environmental influences. The complete system is prepared for working in a clean-room environment.
The hexapod is construed as a slack-free construction with motors such as linear motors, step-

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flexible tool for handling small objects does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flexible tool for handling small objects, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible tool for handling small objects will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3189711

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.