Stock material or miscellaneous articles – All metal or with adjacent metals – Composite; i.e. – plural – adjacent – spatially distinct metal...
Reexamination Certificate
1999-06-04
2002-04-02
Koehler, Robert R. (Department: 1775)
Stock material or miscellaneous articles
All metal or with adjacent metals
Composite; i.e., plural, adjacent, spatially distinct metal...
C156S090000, C156S099000, C204S192270, C359S360000, C359S361000, C427S402000, C427S404000, C427S407100, C427S419200, C427S419100, C427S419700, C428S336000, C428S460000, C428S642000, C428S622000, C428S623000, C428S626000, C428S627000, C428S632000, C428S673000, C428S926000, C428S436000, C428S437000
Reexamination Certificate
active
06365284
ABSTRACT:
FIELD OF THE INVENTION
The present invention is directed to compositions of matter comprising a thin metallic and/or metal alloy and/or metallic oxide, nitride, carbide, silicide, boride, and/or sulfide single or multi-layer coating disposed directly upon a non-polyethylene terephthalate substrate (“non-PET substrate”) substrate in the absence of a carrier sheet. The preferred embodiment of the invention is a prelaminate comprising a solar-control coating deposited upon a flexible, non-PET substrate, such as polyvinylbutyral (PVB), in the absence of a carrier sheet for the coating; a method for making the prelaminate; and a laminating machine for producing the laminate.
BRIEF DESCRIPTION OF THE PRIOR ART
Impact-resistant glasses, such as those used in automobile windshields, large aquariums, skylights, window-clad buildings, and the like, generally consist of one or more layers of a polymeric material (an “interlayer”) laminated between two or more layers of glass. The interspersed polymeric layer functions to absorb and disperse forces which impact upon the glass, thereby providing increased impact resistance to the glass. In the event the glass laminate does break from an impact, the interspersed polymer interlayer binds the shards together so that while the glass may break or otherwise fail from an extreme impact, the glass will not shatter.
As used herein, the term “prelaminate” is used specifically to designate polymeric laminates whose generally intended use is to be incorporated into a finished laminated glass product. (Of course, the actual end use of the “prelaminates” fabricated by the invention described herein has no bearing on the scope of the present invention.) Therefore, as used herein, the term “prelaminate” means a laminate comprised of one or more polymeric layers (being of the same or different polymeric material) having deposited thereon or therebetween a thin metallic and/or metal alloy, and/or metallic oxide, nitride, carbide, silicide, boride, and/or sulfide coating. Preferably, the coating is a solar-control coating. Although the composition is, of course, still a laminate, the term “prelaminate” is used in this fashion because the glass industry customarily uses the noun “laminate” to refer to a finished glass product itself (as opposed to any other laminated product which might be incorporated in the finished glass product).
In recent years, interlayers have come to incorporate not only shatter-resistant properties, but also solar-control properties. Solar-reflecting window assemblies find use, for example, in automobile and architectural applications. In these uses, there is a dual objective to be accomplished by the glass laminate:
1
) to manage heat loads within an enclosed structure by reflecting a portion of the infrared wavelengths of the solar spectrum which cause heating; while
2
) simultaneously maintaining good visible wavelength transmissibility. These coatings are generally referred to herein as “solarcontrol coatings.” In general, most solar-control coatings consist of a series of thin metal and/or metal oxide layers deposited upon a flexible, optically clear substrate, most commonly PET, or deposited directly onto a glass substrate. Numerous solarcontrol coatings of varying composition and construction are described in the patent literature. See, for instance, U.S. Pat. No. 4,413,877 to Suzuki et al.; U.S. Pat. No. 4,462,883 to Hart; U.S. Pat. No. 4,488,775 to Yamamoto; U.S. Pat. No. 4,497,700 to Groth et al.; U.S. Pat. No. 4,504,109 to Taga et al.; U.S. Pat. No. 4,546,050 to Amberger et al.; U.S. Pat. No. 4,548,691 to Dietrich et al.; U.S. Pat. No. 4,799,745 to Meyer et al.; U.S. Pat. No. 4,828,346 to Jacobson et al. U.S. Pat. No. 4,834,857 to Gillery; U.S. Pat. No. 4,847,158 to Gillery; U.S. Pat. No. 4,891,113 to Criss; U.S. Pat. No. 4,973,511 to Fanner et al.; U.S. Pat. No. 5,059,295 to Finley et al.; U.S. Pat. No. 5,071,206 to Hood et al.; U.S. Pat. No. 5,201,926 to Szczyrbowksi et al.; U.S. Pat. No. 5,279,722 to Szczyrbowski et al.; U.S. Pat. No. 5,494,743 to Woodard et al.; U.S. Pat. No. 5,563,734 to Wolfe et al.; U.S. Pat. No. 5,579,162 to Bjornard et al.; U.S. Pat. No. 5,584,902 to Hartig et al.; and U.S. Pat. No. 5,589,280 to Gibbons et al.
A significant problem encountered during the manufacture of conventional solar-control prelaminates is that the layer bearing the solar-control coating (most often PET) must be permanently bonded to the PVB layers without introducing any mechanical defects such as wrinkling, orange-peeling, etc. This is quite difficult owing to the vastly different physical characteristics of PET and PVB. To satisfy the demands of the laminated glass industry, a machine which fabricates solar-control prelaminates (or any other type of prelaminate to be incorporated into a glass laminate) must do so without introducing any mechanical defects in the prelaminate. Defects such as wrinkling in the prelaminate causes unacceptable optical defects in finished glass laminates containing the prelaminate. Adding to the problem is the fact that most of the defects in the prelaminate are not detectable until the prelaminate is incorporated into a laminated glass product. Only upon inspection of the laminated glass product are the defects in the prelaminate readily detectable, in which case the finished product must be rejected, thereby adding greatly to wastage.
Smoothly bonding PVB layers to a PET layer coated with a solar-control coating is very difficult and time-consuming because PVB (the plastic which provides impact resistance to the final glass laminate) is far more temperature-sensitive, and prone to stretch than is the interspersed coated PET film which provides solar control. Because of its extreme temperature sensitivity, PVB sheeting must be handled and worked at reduced temperatures. Even then, PVB sheeting is prone to blocking (i.e., sticking to itself when rolled onto a core). Consequently, prelaminates which incorporate PVB must also be handled at reduced temperatures prior to, during, and subsequent to processing to avoid blocking of the rolled product.
In the prior art laminates, solar-control coatings are described exclusively as being deposited upon an optically clear substrate, such as PET, which is far more stiff and more temperature-resistant than is PVB. However, the present inventors have discovered a means to apply a solar-control coating (virtually any type of solar-control coating) to a substrate, such as PVB, without having to incorporate a carrier sheet in the prelaminate product. Because the vast majority of the difficulties in manufacturing solar-control prelaminates arises during the bonding of a PET carrier sheet to a PVB layer, the present invention solves a long-felt need in the industry: a means to simplify the manufacture of solar-control prelaminates and simulteously reduce wastage. Because the prelaminates of the present invention do not require a carrier sheet bearing the solar-control coating to be incorporated into the prelaminate, a troublesome step in the manufacture of solar-control laminated glass products is eliminated by the present invention.
SUMMARY OF THE INVENTION
One aspect of the invention is directed to a solar-control prelaminate comprising a polymeric substrate, preferably PVB, containing directly thereon, and in the absence of a carrier sheet, a solar-control coating. The invention is also drawing to a polymeric substrate, preferably PVB, containing directly thereon a thin metallic and/or metal alloy, and/or metallic oxide, nitride, carbide, silicide, boride, and/or sulfide coating. The invention encompasses multilayer laminates and solarcontrol prelaminates containing the same.
Another aspect of the invention is directed to a solar-control prelaminate produced by depositing a solar-control coating upon a carrier sheet and then transferring the solar-control coating from the carrier sheet to a flexible substrate to yield a substrate having the solar-control coating contained directly thereon, without the presence of a carrier sheet. The substrate may then be b
Crown Operations International, Ltd.
DeWitt Ross & Stevens S.C.
Koehler Robert R.
Leone, Esq. Joseph T.
LandOfFree
Flexible solar-control laminates does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Flexible solar-control laminates, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible solar-control laminates will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2851001