Flexible SNMP trap mechanism

Electrical computers and digital processing systems: multicomput – Computer-to-computer data routing – Least weight routing

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C709S202000, C709S224000

Reexamination Certificate

active

06182157

ABSTRACT:

BACKGROUND OF THE INVENTION
The invention relates generally to network management, and more particularly to remote alarm threshold and status monitoring of network elements.
Network management systems are employed to monitor, interpret, and control the operations of a network. In a typical network management system, network devices (e.g., servers, gateways, hosts) are provided with agent software (an “agent”) that monitors and accumulates operational data and detects exceptional events. A management station includes management software (a “manager”) at the application level which requests operational data or receives event notifications from the agent using management protocols. The management station is further equipped to interpret the operational data and event information to effect control of the network operations.
Simple Network Management Protocol (SNMP) (J. Case et al., “A Simple Network Management Protocol”, RFC 1157, May 1990) defines a standard protocol for the communication of management information. SNMP specifies the format and meaning of messages exchanged between managers and agents and the representation of names and values in those messages. A virtual information store, termed a Management Information Base (MIB) (K. McCloghrie and M. Rose, “Management Information Base for Network Management of TCP/IP-based Internets”, RFC 1156, May 1990), defines the management data or objects by specifying the data variables a network device must keep, including the names of the data variables and the syntax used to express those names. For example, the MIB may specify data variables which track statistics on the status of network interfaces, incoming and outgoing datagrams, and the number of routing failures. The rules used to define and identify MIB data variables are provided by the Structure of Management Information (SMI) specification (M. Rose and K. McCloghrie, “Structure and Identification of Management Information for TCP/IP-based Internets”, RFC 1155, May 1990). Each managed data variable or object has a name known as an object identifier which specifies an object type. The object type together with an object instance uniquely identifies a specific instantiation of the object. For convenience, a text string known as an object descriptor is used to refer to the object type.
SNMP uses a fetch-store paradigm to effect operations between a manager and agent. Specifically, SNMP defines get-request, get-next-request, get-response, and set-request commands which provide the basic fetch and store operations. In addition, SNMP defines a trap command by which an agent asynchronously sends information to a manager triggered by an event. Thus, a management station requests operational data or receives event notifications by means of this simple set of SNMP commands.
A limitation of known MIB structures is that trap definitions are predefined in the MIB. For any particular MIB, traps are defined which trigger when specific conditions are met. Since the traps are predefined at the time the MIB is designed, a network management station typically must poll the network device for values of MIB variables not specified in a defined trap. Polling across the network is undesirable since it adds to network traffic. To provide for more extensive monitoring of events without having to poll, a MIB could be designed to include additional predefined trap definitions, one for each combination of variables. However, for large MIBs, the number of variables needed can be prohibitive for this approach. Further, since the traps are predefined, a user of the management station does not have the option of turning certain traps on and off.
An improvement on predefined MIBs is the Remote MONitor (RMON) MIB (S. Waldbusser, “Remote Network Monitoring Management Information Base”, RFC 1757, February 1995) which provides a way to define traps. The RMON MIB includes an alarm group of objects which periodically takes statistical samples from data variables and compares them with preconfigured thresholds. An alarm table in the RMON MIB specifies configuration entries that each define a variable and associated threshold parameters. An event is generated and a trap is sent when it is determined that a sample has crossed a threshold value. Two thresholds are provided: a rising threshold and a falling threshold. The rising threshold is crossed if the value of the current sample is greater than or equal to the rising threshold. Likewise, a falling threshold is crossed if the current sample value is less than or equal to the falling threshold. To limit the generation of traps, the RMON MIB includes a hysteresis mechanism. According to the hysteresis mechanism, one trap is sent as a threshold is crossed in the appropriate direction. No additional traps are sent for that threshold until the opposite threshold is crossed.
However, the RMON MIB is limited in the variables that it supports and the conditions that it can specify for generating a trap. While the RMON MIB supports thresholding on statistical values (e.g., the number of packets or collisions counted for a monitored interface), it has limitations on trapping multistate or enumerated status variables. For example, a status variable for a device typically may have multiple states defined, such as “unknown”, “running”, “warning”, “testing”, and “down”. Each state is represented in the MIB object syntax by a different integer value, e.g., unknown=1, running=2, warning=3, testing=4, and down=5. Since the RMON MIB only supports thresholding using “greater than or equals to” and “less than or equals to” comparisons, thresholding for a particular state of a multistate status variable is difficult and cumbersome.
SUMMARY OF THE INVENTION
A need exists for a mechanism for defining a trap in a more extensible and flexible manner on any managed variable, whether a threshold or a status variable.
The above and other problems are solved by the alarm monitoring apparatus and method of the present invention. The present invention provides a mechanism for allowing a user of a management station to dynamically create and flexibly configure a trap based on any MIB variable without having to define an exhaustive set of trap definitions in a MIB. Further, the mechanism enables remote monitoring of the health or condition of a network device rather than simply monitoring of network traffic through a device.
Accordingly, the present invention resides in a computer network having a multiplicity of devices, including a digital processor coupled to the network for communication among the devices, the digital processor serving as a system management station for managing the network devices. Apparatus for monitoring status of a network device comprises a processor assembly coupled to a subject network device and a data memory member accessible by the processor assembly for indicating user-defined alarm thresholds of the subject device. The processor assembly obtains threshold data from the data memory member and compares current status to the obtained threshold data. Upon a threshold being met by the current status, the processor assembly transmits an indication of threshold condition of the subject device to the system management station across the network. The data memory member is a database formed of a plurality of records defined by a MIB.
According to one aspect of the invention, a local handler can be invoked upon the threshold being met.
According to another aspect of the invention, an alarm threshold or trap can be set for any MIB variable using a table mechanism. Each alarm threshold is set as a record or instance in an alarm threshold table.
According to another aspect of the invention, a trap defined by an alarm threshold record can persist over a restart of the network device or agent.
According to still another aspect of the invention, the threshold record includes a descriptor variable comprising a descriptor string for authenticating a trap over restart of the network device or agent.
According to yet another aspect of the invention,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flexible SNMP trap mechanism does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flexible SNMP trap mechanism, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible SNMP trap mechanism will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2518545

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.