Machine element or mechanism – Control lever and linkage systems – Multiple controlling elements for single controlled element
Patent
1994-04-08
1995-11-28
Herrmann, Allan D.
Machine element or mechanism
Control lever and linkage systems
Multiple controlling elements for single controlled element
92 48, 901 22, 901 23, B25J 1806
Patent
active
054697565
DESCRIPTION:
BRIEF SUMMARY
BACKGROUND OF THE INVENTION
1. Field of the Invention
The present invention relates generally to robotics and more specifically to a flexible robotic arm.
2. Description of the Related Art
Currently, robots are being increasingly used in areas in which the precise and rapid reproduction of movement operations is important. Principally in the fields of industrial production, e.g. the automotive industry, robots are used to position and move tools, such as when paint-spraying and welding. By means of robots it is ensured that a specific degree of quality can be maintained for high volume production.
Usually, the robots used have arms which consist of a plurality of sub-elements connected to one another by joints. In order to carry out the expected movements, these arms require a correspondingly large room in which to maneuver and are not suitable for use in a restricted environment beset with obstacles.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide an apparatus with which manipulations can be performed under spatially restricted conditions and which can be used as a robot arm.
It is another object of the invention to provide an apparatus capable of reaching any locations in the region of the trunk with the tip of the trunk.
It is a further object of the invention to provide an apparatus with a cavity inside the trunk that permits materials to be supplied and carried away directly at the point of use or provides for current connection cables to be attached.
The invention is explained in greater detail with reference to an exemplary embodiment having a hydraulic or pneumatic variant of the robot trunk and to the figures.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an embodiment of a trunk element of the present invention.
FIG. 2 illustrates a trunk of the present invention having a control and a power supply.
FIG. 3 illustrates a trunk of the present invention in a curved state.
FIG. 4 illustrates an annular embodiment of a trunk element of the present invention.
FIG. 5 illustrates an embodiment of two trunk elements of the present invention positioned on top of the other connected by a joint.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 shows a trunk element 1 which is divided along an axis of symmetry S into trunk element segments 2 and 3.
The basic dement illustrated here is annular but it is also conceivable to use cake-shaped trunk elements or polygonal trunk elements which consist of a plurality of said segments and can also be divided up asymmetrically.
FIG. 2 shows a trunk 4 which consists of trunk clements 1 which are joined one on top of the other along a stacking axis A with a control 5 and a power supply 6. The control 5 in conjunction with the power supply 6 ensures that specific parameters such as: the angle of attack of the trunk clements 1 with respect to one another, electrical or magnetic field strengths and pressures in the trunk element segments 2, 3 can be determined and set. In FIG. 2, the decisive parameters in all the trunk element segments 2, 3 are identical so that the trunk 4 is located in a straight state.
FIG. 3 shows the trunk 4, which consists of the trunk elements 1 with segments 2, 3 and the control 5 and of the power supply 6, in a curved state. The curved state is achieved in that different actuation parameters, such as for example pressures, are set independently of one another in the trunk element segments 2, 3 of the trunk elements 1 in such a way that an angle of attack of the trunk elements 1 with respect to one another is achieved.
FIG. 4 shows an annular trunk element 7 of the robot trunk 4. It is characterized by joints 8, valves 9 and hydraulic inflow and outflow lines 10 and by control logic 11 and 1 control bus 12 with electric power supplies. The annular trunk element 7 is not flat on its top but rather rises from both sides towards the joints 8 in a wedge shape.
If a plurality of such annular trunk elements 7 can be positioned one on top of the other and subsequently covered in a sealed fashion with ru
REFERENCES:
patent: 3284964 (1966-11-01), Saito
patent: 4494417 (1985-01-01), Larson et al.
patent: 4661039 (1987-04-01), Brenholt
patent: 4784042 (1988-11-01), Paynter
patent: 4900218 (1990-02-01), Sutherland
patent: 4954952 (1990-09-01), Ubhayakar et al.
Herrmann Allan D.
Siemens Aktiengesellschaft
LandOfFree
Flexible robot arm does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Flexible robot arm, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible robot arm will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2005621