Optical: systems and elements – Deflection using a moving element – Using a periodically moving element
Reexamination Certificate
2001-09-18
2003-05-06
Chang, Audrey (Department: 2872)
Optical: systems and elements
Deflection using a moving element
Using a periodically moving element
C359S199200
Reexamination Certificate
active
06559987
ABSTRACT:
FIELD OF THE INVENTION
This invention relates to optical networks, and in particular, to the flexible optical network architecture, which provides flexible connection between the network nodes.
BACKGROUND OF THE INVENTION
Optical communications systems have been employing different network architectures to provide required connections between the network nodes. For example, in a fixed wavelength network, where each node transmits and receives channels at fixed wavelengths, the transmitted/received wavelengths are the same for those nodes that communicate with each other. This network architecture requires multiple transmitters and receivers at each node, or otherwise it does not have flexibility to provide multiple connections between different nodes. It is also costly and inefficient to upgrade such a network, e.g. to accommodate new channels or to establish new connections, as it will require the addition of extra transmitters/receivers at the nodes. As a result, with this network architecture, it is difficult to satisfy the ever-increasing demand for network growth.
To overcome the limitations of fixed wavelength networks, it has been suggested to use tunable wavelength transmitters and/or receivers to provide higher flexibility of the network connections. For example, in a Fixed-tuned Transmitter and Tunable Receiver (FTTR) approach, each node is assigned with a specific wavelength for data transmission, while a receiver is a tunable device capable of receiving one of several data streams at different wavelengths generated by the transmitters. To transmit data from node j to node i, signalling messages have to be first sent to inform node i to tune its receiver to wavelength &lgr;
j
for data reception. FTTR network architecture has been deployed, e.g. in a European experimental system named Rainbow-II networks and published in an article by Eric Hall et al. entitled “The Rainbow-II Gigabit Optical Networks”, IEEE Journal of Selected Areas in Communications, Volume 14, No. 5, June 1996, p.614-823.
Another approach, where tunable devices are used at network nodes, is known as Tunable Transmitter and Fix-Tuned Receiver (TTFR) network architecture. In the TTFR approach, each node is assigned with a fixed wavelength for data reception, where the receivers at node i are only responding to the wavelength channel i (&lgr;
i
). Nodes intending to send data to node i have to tune their transmitters to wavelength &lgr;
i
. TTFR architecture has been described, e.g. in the article to Chun-Kit Chan et al. entitled “Node Architecture and Protocol of a Packet Switched Dense WDMA metropolitan Area Network”, Journal of Lightwave Technology, Vol. 17, No. 11, November 1999, pp. 2208-2218, where TTFR concept has been applied to DWDM networks.
The major drawback of tunable devices is their high cost and low reliability compared to the fixed wavelength devices. Additionally, the process of wavelength tuning has finite response time, it is sensitive to temperature and/or current changes and therefore requires stabilization.
Thus, network architecture using fixed wavelength devices can provide quick and reliable connections, but fail to provide flexibility and cost effective solutions to accommodate network growth and utilization. In contrast, known network architectures using tunable devices can provide flexibility of network connections, but tend to be expensive, less reliable and more complicated in exploitation and maintenance.
Accordingly, there is a need in industry for the development of an alternative optical network and node architecture, which would deliver inexpensive, flexible and reliable network connections.
SUMMARY OF THE INVENTION
Therefore there is an object of the invention to provide an optical network architecture which would provide flexibility of the network connections while being simple and cost effective.
According to one aspect of the invention there is provided an optical network, comprising:
a plurality of nodes, each node having a transmitter for transmitting a set of “n” wavelengths, and a receiver for receiving another set of “n” wavelengths, the set of wavelengths of the transmitter being different from the set of wavelengths of the receiver;
wavelengths of transmitters and receivers at different nodes being arranged so that for any pair of nodes there is at least one common wavelength which is the same for one of the transmitter and receiver at one node and one of the respective receiver and transmitter at the other node, thereby providing a uni-directional, direct connection between the nodes.
Conveniently, wavelengths of transmitters and receivers at different nodes can be arranged so that for any pair of nodes in the network there are at least two common wavelengths, the first and second common wavelengths, the first wavelength is the same for the transmitter at one node and the corresponding receiver at the other node in the pair, and the second wavelength is the same for the receiver at one node and the corresponding transmitter at the other node in the pair, thereby providing a bi-directional direct connection between the nodes.
Conveniently, the total number of the wavelengths used in the network is equal to “2n”, the total number of nodes is equal to N=(2n) !/(n!n!), and the number of common wavelengths for any pair of nodes is not exceeding “n−1”.
The number of wavelengths used by transmitters or receivers at each node may be conveniently equal to n=2,3, 4 to 10, or any other number of wavelengths, which would provide required connection between the nodes in the network.
Preferably, transmitters and receivers at the network nodes are fixed wavelength devices, which generate or receive signals at fixed wavelengths. Alternatively, some or all of the transmitters and/or receivers may be tunable or switchable wavelength devices, which allow tuning or switching of the wavelength within a required wavelength range.
The network architecture described above can be applied to various types of optical networks, e.g. a wavelength division multiplexing (WDM) network, including ring, multi-ring, mesh, bus and star network topologies.
According to another aspect of the invention there is provided a node for an optical network, comprising a transmitter for transmitting a set of “n” wavelengths, and a receiver for receiving another set of “n” wavelengths, the set of wavelengths of the transmitter being different from the set of wavelengths of the receiver;
the wavelengths of the transmitter and receiver at the said node are arranged so that for any pair of nodes in the network, where the said node is one of the two nodes in the pair, there is at least one common wavelength which is the same for one of the transmitter and receiver at the said node and one of the respective receiver and transmitter at the other node in the pair.
Conveniently, the wavelengths of the transmitter and receiver at the node are arranged so that for any pair of nodes in the network, where the said node is one of the two nodes in the pair, there are at least two common wavelengths, the first and second common wavelengths, the first wavelength is the same for the transmitter at the said node and the corresponding receiver at the other node in the pair, and the second wavelength is the same for the receiver at the said node and the corresponding transmitter at the other node in the pair.
Advantageously, the node described above further comprises an optical add/drop multiplexer/demultiplexer (OADM) including means for dropping wavelengths from the network at the node and means for adding wavelengths to the network from the node. Conveniently, the means for dropping wavelengths includes means for dropping one wavelength at a time, comprising a set of “n” optical filters adjusted to the wavelengths of the receiver, and the means for adding wavelengths includes means for adding one wavelength at a time, comprising another set of “n” optical filters adjusted to wavelengths of the transmitter.
According to yet another aspect of the invention there is provided a method
Allen Denise S.
Chang Audrey
Donnelly Victoria
Tropic Networks Inc.
LandOfFree
Flexible optical network architecture does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Flexible optical network architecture, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible optical network architecture will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3022090