Flexible interconnection between integrated circuit chip and...

Electricity: electrical systems and devices – Housing or mounting assemblies with diverse electrical... – For electronic systems and devices

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C361S783000, C361S776000, C257S703000, C257S778000, C257S720000, C439S066000, C439S091000

Reexamination Certificate

active

06188582

ABSTRACT:

FIELD OF THE INVENTION
The disclosed invention relates to the interconnection of integrated circuit chips with various surfaces including, primarily, printed circuit boards. The invention concerns in particular the method of interconnection of chips and a printed circuit board. More particularly the invention regards an apparatus and a method directed to the reduction of stresses within the interconnection medium or apparatus and thus the reduction of the likelihood of interconnection failure between the chip and the particular surface or device to which a chip interconnection is made.
BACKGROUND OF THE INVENTION
The trend in the semiconductor industry is the development of submicron level integrated circuits (IC or chip). The use of the IC involves interconnection between the IC and the surface or device where it is positioned. Interconnection include silicon chip connection between chip and lead frame or board; printed wiring connecting individual components; and interconnection between printed wiring boards. Of these interconnections, chip to board interconnection failure is the cause of the majority of failures of electronic systems or devices. Of interconnection failures, solder related interconnection failures are the largest contributors to electronic package failure.
Interconnection provide mechanical, thermal, and electrical functions in the electronic package. Various technologies have been developed to solve this problem of interconnection between chips and the chip and the circuit board. The pin in hole or pin through hole was the traditional method, until the late 1980's when the surface mount technology was introduced. The introduction of the surface mount technology revolutionized the electronic packaging industry. Surface mount technology includes flip chip, chip-on-chip, tape automated bonding, ball grid array and multi-chip module. Each of these techniques differ in its circuitry design and interconnections. U.S. Pat. No. 5,801,447 to Hirano et al., a flip chip mounting type device having a gate region for injection of a sealing member filled between a mounted board and the chip.
Solders have been successfully used for interconnections. Solder fluxes and solder powders have been combined into paste and is easily applied to component foot print areas. Various interconnection methodologies such as vapor phase, convection, laser, infrared, and hot-bar reflow are in use today. With the surface mount technology solder interconnection will continue to be the most reliable, with case of interconnection, and cost effective method. However, failure in solder interconnection are due to the following: mechanical failure due to weakness in material strength, surface tension effect, high temperature creep and plastic deformation, excessive void, intermetallic compound formed at interfaces, the development of damaging microstructures, fatigue failure due to corrosion, and mismatch in coefficient of thermal expansion (CTE).
The joint material causes serious failure due to stress as a result of CTE mismatch. The thermal environment experienced by electronic circuits varies greatly encompassing a range of −50 degrees to +200 degrees F., or more. The CTE of plastic/ceramic is approximately 20 times the CTE of the silicon chip. One solution is to use strain buffers between the low CTE silicon and the high CTE metal. At present solders will strain buffers such as copper and molybdenum are in use. The strain at the solder joints due to temperature change, and fatigue failure of solder interconnections remain high. U.S. Pat. No. 5,170,329 to Purdes discloses a chip mount to reduce stresses caused by thermal expansion mismatch between chip and printed circuit board including a strip member secured to the chip and a guide layer secured to the circuit board.
Typically a packaging scheme may require high heat removal, combined with low stress at the interconnection between chip and board. Thus the interconnection materials should have high thermal conductivity to dissipate heat produced by the chips, with close match between the CTE of the chip and the substrate to minimize thermal stress. However, most of the work in electronic packaging is concerned with packaging schemes rather than materials. The chip or die is attached to the substrate or printed circuit board (PCB) on which interconnection lines have been written (usually by screen printing) on each layer of multilayer substrate or board. In the first level packaging the chip (or chips) may be attached to substrate via soldered joints and the substrate attached to the PCB via soldered joints. In the direct chip attach module (DCAM), the chip is attached directly to the PCB. In the multichip module laminate (MCML), the chip is attached via cardlet, with one or many card attached to a large card. The MCML allows for denser packaging. In surface mount technology (SMT) the surface patterns of conductors are connected electrically without employing holes. Solder is used to make electrical connection between the surface mount package (leaded or leadless) and a circuit board. An examination of conventional pin-through-hole (PTH) technology and high density packaging based on surface mount technology (SMT) provides clues as to the failure mechanism.
One approach to meet the needs of advanced material in electronic packaging is to create new composite materials. Composite materials consists of two or more constituents, with each one maintaining distinct properties and regions. Accordingly alloys are not composites.
One of the well-established composite is the glass fiber reinforced polymer (GFRP) for printed circuit boards. However the recent advanced composites provide unique advantages by being able to tailor their CTE, with high thermal conductivity, low density, and with high strength, and stiffness. At present, the leading composites of interest for applications such as heat sinks and packages are carbon fiber reinforces epoxy (C/Ep), carbon fiber reinforced aluminum (C/Al), carbon fiber reinforced copper (C/Cu), boron fiber reinforced aluminum(B/Al) and silicon carbide particle reinforced aluminum(SiC)-p/Al). Fiber reinforced composites are strongly anistropic; their properties depend strongly on fiber direction. In contrast, monolithic and particle reinforced metals tend to be isotropic; their properties are the same in every direction. Mechanical and physical properties of fiber reinforced materials can be tailored over wide ranges by selection of fiber, matrix, fiber volume fraction, and fiber orientations. It is known that the isotropic inplane CTE of copper reinforced with a variety of pitch-based carbon fibers varies with fiber volume fraction. By varying fiber volume fraction, Vf, it is possible to match the CTE of virtually all materials of interest, including silicon, gallium arsenide, alumina, beryllia and aluminum nitride. The inplane thermal conductivity of C/Cu composites vary with Vf. Note they are much higher than those of conventional packaging materials with low CTE's. Through-thickness conductivities are also high. The CTE and thermal conductivity of carbon fiber reinforced aluminum vary with fiber volume fraction. Another important composite material is reinforcing aluminum alloys with silicon carbide particles. The purity of SiC plays an important role here, and high purity particles have higher thermal conductivities.
The most common composites consists of a matrix reinforced with continuous or discontinuous fiber whiskers, or particles. The four key classes of composites are polymer-matrix composites (PMC's), metal matrix composites (MMC's), ceramic-matrix composites (CMC's) and carbon/carbon (C/C) composites. In addition, there are composites in which the phases have amorphous geometries. For example, some circuit breaker contacts are made by infiltrating silver into a porous preform made by sintering tungsten particles, in essence a metal/metal composite.
The problem associated with brazes and solders can be alleviated by the use of composites brazes or solders which cont

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flexible interconnection between integrated circuit chip and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flexible interconnection between integrated circuit chip and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible interconnection between integrated circuit chip and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2563135

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.