Flexible hose system for installing residential and...

Metal working – Method of mechanical manufacture – Gas and water specific plumbing component making

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C029S890140, C029S508000, C285S256000, C285S241000, C285S242000

Reexamination Certificate

active

06772519

ABSTRACT:

This invention relates to refrigerant transmission components designed as a complete transmission system. More particularly, the present invention pertains to the hose and hose couplings of a residential and/or commercial refrigeration system.
Components for the transmission of refrigerant in residential and commercial systems are well known. Typically, these systems rely on heavy duty copper tube or pipe with the associated fittings. Systems and methods for installation of refrigeration systems are very inefficient, wasteful, and time consuming. These systems are also prone to leakage from inadequately soldered joints. Also during the soldering process there is an undetermined amount of material that is flaked off on the inside of the copper lines causing system contamination.
Accordingly, a need exists, especially for use in residential and commercial refrigeration applications for a system which provides increased resistance to high pressure, flexibility of installation, as well as and most importantly, speed and economy of installation.
The present invention provides for a residential or commercial refrigeration compressor/condenser unit to be joined to the evaporator through the use of a specialized fitting welded, typically by brazing or soldering, on one end to the compressor (or evaporator) and clamped to a flexible hose on the other. This flexible hose will connect the compressor/condenser unit or any other refrigeration parts placed between them using a fitting similar in design to the one connecting the compressor to the flexible hose. This is a great time and labor saving benefit especially when expanding an existing system or retrofitting a new one.
The fitting can be made of brass and other materials suitable for high pressure refrigerant lines and once welded to the compressor, condenser, or evaporator units will provide a stable, leak proof platform for the attachment of the flexible hose. The hose will be attached to the fitting and sealed with two internal “O” rings. A clamp positioner will insure that the two clamps will be exactly centered over each “O” ring to provide and maintain a leak proof seal. The hose itself is similar in construction to a commonly produced air conditioning hose such as commercially available Aeroquip part no. GH134. This hose is currently manufactured in four diameters. The use of such a hose not only provides a degree of flexibility not found in copper pipe, but is also over three times stronger than it's copper counterpart with a strength rating of 2500 psi versus barely 800 psi for copper pipe. This strength is very advantageous with the possible regulatory phase-out of R-22 for its replacement R-410A. Similar hoses made by other manufacturers would also work. These hoses are designed and manufactured with materials, which will not allow the refrigerant to permeate through the hose and escape into the outside environment. As an example of the ratings of such a hose, the Aeroquip GH134 hose has an industry agency listing of SAE J2064 Type E Class 1. The inner tube material is nylon with a textile braid reinforcement made from a polyester material. The cover material is a synthetic rubber made from a chlorobutyl and hypalon material. The maximum operating pressure is recommended at less than 500 psi with a burst pressure rating of 2500 psi, a safety factor of 5 to 1. The minimum bend radius is approximately 2 inches. The operating temperature range is between −22° F. to 257° F. (−30° C. to 125° C.). Certainly, any comparable hose suitable for use with refrigerants at the expected operating parameters of the equipment will work. The Aeroquip hose is merely an example of currently known equipment that works well with the present invention. Another typical hose that may be suitable is described in Aeroquip owned U.S. Pat. No. 5,957,164 issued Sep. 28, 1999 to Campbell.
The new R-410A operates at much higher pressures. It is important to note that the strength of copper pipe is diminished by the degree of which it is heated. Because the flexible hose has a woven outer core, sweating is greatly reduced. If additional insulation is added, similar to Armorflex foam covering, it may be possible to increase the systems efficiency and reduce electrical consumption.
Vibration is another factor, which can cause damage to an air conditioning system. Vibration can cause joints to wear and fail, and can create noise throughout the system. And if the system is poorly designed, the compressors own pulsation's can be fed back to the compressor valves. Through is use of flexible hosing, system vibration is eliminated.
Safety is a primary concern for every contractor as well every homeowner. For the contractor, the level of professionalism differs from state to state. For example; Massachusetts requires that every individual be school trained and pass a license exam as opposed to Florida where only one individual in a company is required to hold a current license. No matter how skilled, the technician workplace injuries like serious cuts and burns will always take place. Because there are no sharp edges and minimal brazing required at the equipment connection, lost workdays and decreased productivity is almost eliminated. Further, because no brazing need take place inside of a residence or commercial facility, the risk of collateral damage to the premises is eliminated and liability will be greatly reduced as well. Hopefully, a contractor's liability insurance will also be reduced. This is especially true when performing a restoration or retrofitting/upgrading an existing system.
Cost as well as time is a major concern for the contractor. Because there is essentially no welding involved with the hose system, installation time is greatly reduced. A contractor who is tasked with the plumbing of air conditioning units in a large condominium complex or housing development can reduce installation time from days to hours. The contractor can also accurately estimate his costs and profit. This is easily accomplished because the hose can be cut to the exact length and fittings ordered to match the number of units being installed. Inventory costs can be reduced because extra fittings and copper tubing is no longer required to be kept on hand. The inventory of equipment such as torches, gas, brazing rods and solder is significantly reduced. All tools required for installation can fit in the technicians pocket or working pouch. The requirement for large vans to transport extraneous equipment can now be replaced with smaller economical fuel-efficient vehicles.


REFERENCES:
patent: 3549180 (1970-12-01), MacWilliam
patent: 3935713 (1976-02-01), Olson
patent: 4022496 (1977-05-01), Crissy et al.
patent: 4607867 (1986-08-01), Jansen
patent: 5191770 (1993-03-01), Kim
patent: 6010162 (2000-01-01), Grau et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flexible hose system for installing residential and... does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flexible hose system for installing residential and..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible hose system for installing residential and... will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3282654

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.