Measuring and testing – Muscular force
Reexamination Certificate
2000-09-18
2002-12-03
Noori, Max (Department: 2855)
Measuring and testing
Muscular force
Reexamination Certificate
active
06487906
ABSTRACT:
BACKGROUND OF THE INVENTION
1. Technical Field of the Invention
This invention relates to instrumentation for monitoring of motion and flexure of body joints and digits. In particular, it relates to flexible film based sensor configurations for monitoring body joint movement, suitable for use with body-mounted appliances and specialized signal processors with discrete audible or colored light and other biofeedback capabilities.
2. Discussion of Prior Art
The art of user figment with medical devices for injury avoidance and rehabilitation therapy is not new. However, as with medical care and treatment in general, it used to be conducted with a somewhat cavalier attitude about cost. The ‘if it doesn't cost a lot in can't be any good’ attitude, was driven home to the applicant some years ago when a new state of the art oscillometer product costing a conservative (US)$300 was offered to a surgeon who quipped, “I paid that for the light I wear in the operating room,” and declined to consider it further.
Now, however, we have entered an era of greater emphasis on reduction and control of medical care and treatment costs. There is a new willingness by the medical care delivery establishment to consider and even search for lower cost products that offer bonafide medical benefits. The need for lower cost medical products extends to injury prevention and rehabilitation devices.
There are, in the prior art, body suit implementations for general measurement of body activities for injury avoidance training and/or physical rehabilitation. One body suit, disclosed in U.S. Pat. No. 4,729,377, requires points of electrode contact with the skin and requires soaking the garment with conductive fluid to select the measurement points of interest. Another suit, disclosed in U.S. Pat. No. 5,375,610, encompasses the entire body and measures inclination by a plurality of mercury switches. Both are costly examples of accomplishing generalized monitoring at the expense of ease of use, and do not lend themselves to casual use as in sports training or for prolonged use in repetitive or continuous motion. These types of devices are more appropriate for specific data collection testing sessions rather than for everyday wearing to monitor body motion for injury prevention or rehabilitation in the industrial setting.
Many prior art devices utilize standard transducer technology that is rigid and has low electrical sensitivity. The former creates a comfort issue when integrated with a user system while the latter generates a need for electrical shielding and high gain amplification, limiting both cost and function.
In addition to the medical need, professional and recreational training activities for kinetic sports share the requirement for low cost, effective monitoring of body motion. Common problems facing both industries are the need for a system or inventory of low cost associated devices to meet the needs of athletes and patients of different sizes; the need for a flexible scheme for universal figments adaptable to each part of the body; the need for a self-monitoring system and methodology that is easy for the athlete or patient to remove and reinstall daily, and to use and interpret so as to realize the full benefit.
More specifically, industry data clearly indicates a large amount of pain, suffering, lost time and lost productivity results from back injuries that occur on and off the job from lack of training or improper training and monitoring in lifting and related activities. Lifting is a general problem, while twisting while lifting or repetitive twisting such as when moving parts along a production line are also statistically very significant contributors to employee injuries.
One example of a recently introduced commercial body motion monitoring device is the Spine Tuner™ by Clear Sky Products, a posture monitor consisting of a belt that goes around the back approximately half way between the waist and shoulder that holds a small system module against the spine. The system module consists of a pressure-activated switch that is actuated by pressure, forcing the housing to compress front to back, actuating the switch. When the switch is closed, a battery is connected directly to a small motor with unbalanced weight, to cause vibrations that are noticeable to the user. Adjusting the contact spacing on a stamped metal switch by turning an adjustment screw sets the system sensitivity. This operation cannot be performed while the device is being worn, which requires the user to use an awkward trial and error approach to obtain a useful setting. The feedback scheme for the Clear Sky device utilizes a single threshold at which a signal is initiated.
An example of the need for body motion monitoring in the sports training category is the game of golf. The new buzzword in the golf industry for the past five years or so is the “X” factor, a rotation of the shoulders relative to the hips. The need to monitor spinal twisting in this instance is similar to some industrial requirements.
It is common for workers in some companies and industries to be required to wear back support belts. Home Depot and the Marriott Chain are among companies believed to require the use these devices for employees in lift-related jobs. Interviews with workers that are required to wear these belts have produced comments such as, “Now that I have support I can lift heavier things”, which defeats the primary purpose; and “I have to wear it but I don't think it does anything.” There seems to be an acceptance and confidence problem with these commonly required devices that defeats or reduces their intended benefit.
Much of the technology for medical and sports requirements rely on braces. A sport brace called The Secret™, endorsed by golf pro Greg Norman, sells at a premium price, but constrains the user to a particular position of the wrist, an approach that is not likely to promote good muscle memory.
Braces in general have a number of problems, they are uncomfortable, frequently they do not quite fit the subject or the need, in training they do not promote good muscle memory, they can cause injury by constraining too well during a required activity, particularly in athletics, and they can promote “false” confidence causing users to try to over perform. When these devices are removed, everyday performance seems awkward.
What is needed, for both medical and athletic fields, is a low cost system and methodology of devices, sensors and biofeedback mechanisms that are flexible and adaptable to various body motions, comfortable to wear, and easy to understand and use.
SUMMARY OF THE INVENTION
Our research, as disclosed in this and previously filed applications, shows that discrete, multi-level thresholds of realtime biofeedback, where the feedback mechanism holds the peak a value of the measured parameter sufficiently long or otherwise emphasizes it to ensure user awareness, enables more meaningful comprehension of the relationship between the effort and the motion response. A limited set of frequency-discrete tones of audio feedback, or of color discrete light feedback, accomplish this end.
Not all means of sensory awareness are suitable for this more complex type of biofeedback. Vibration, for example, as with a mechanical device worn where its physical vibrations are noticeable to the wearer, is known to be viable for single threshold, on/off type signals. However, most users' level of sensitivity to this type of messaging is too low to discriminate between even a limited set of different vibration frequencies or amplitudes, particularly in a realtime environment. Physically displaced points of vibration may be suitable for messages with significantly different meaning, but may be too distracting for usefully tracking the acceleration common to repetitive human movements.
A non-invasive monitoring system with discrete audible or lighted color, used on a repetitive basis, makes it clear that the user is approaching a danger limit, eliminating the over confidence factor and encouraging compliance with proper lifting
Advantedge Systems Inc
Maine Vernon C.
Maine & Asmus
Noori Max
LandOfFree
Flexible film sensor system for monitoring body motion does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Flexible film sensor system for monitoring body motion, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible film sensor system for monitoring body motion will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2996146