Multiplex communications – Pathfinding or routing – Combined circuit switching and packet switching
Reexamination Certificate
2000-02-29
2004-05-04
Jung, Min (Department: 2733)
Multiplex communications
Pathfinding or routing
Combined circuit switching and packet switching
C379S900000
Reexamination Certificate
active
06731630
ABSTRACT:
BACKGROUND OF THE INVENTION
A. Field of the Invention
The present invention is related to data network telephony systems. In particular, the present invention relates to assigning communication numbers to users and/or devices, within a data network telephony system.
B. Description of the Related Art
For many years, telephone service providers on the Public Switched Telephone Network (PSTN) provided their customers nothing more than a telephone line to use to communicate with other subscribers. Over time, telephone service providers have enhanced their service by providing Custom Local Area Signaling Service (CLASS) features to their customers. Similar communication services are provided by a Private Branch Exchange (PBX), which is typically implemented in a nonresidential setting.
The CLASS features permit customer subscribers of the features to tailor their telephone service according to individual needs. Some of the more popular CLASS features are:
Call blocking: The customer may specify one or more numbers from which he or she does not want to receive calls. A blocked caller will hear-a rejection message, while the callee will not receive any indication of the call.
Call return: Returns a call to the most recent caller. If the most recent caller is busy, the returned call may be queued until it can be completed.
Call trace: Allows a customer to trigger a trace of the number of the most recent caller.
Caller ID. The caller's number is automatically displayed during the silence period after the first ring. This feature requires the customer's line to be equipped with a device to read and display the out-of-band signal containing the number.
Caller ID blocking: Allows a caller to block the display of their number in a callee's caller ID device.
Priority ringing: Allows a customer to specify a list of numbers for which, when the customer is called by one of the numbers, the customer will hear a distinctive ring.
Call forwarding: A customer may cause incoming calls to be automatically forwarded to another number for a period of time.
A customer subscriber to a CLASS feature may typically activate and/or de-activate a CLASS feature using “*” directives (e.g., *69 to automatically return a call to the most recent caller). CLASS features may also be implemented with the use of out-of-band data. CLASS feature data is typically transmitted between local Class-5 switches using the Signaling System #7 (SS7).
Local Exchange Carriers (LECs) and other similar organizations maintain CLASS offices that typically contain a database entry for each customer. The database allows specification of the CLASS features a customer has subscribed to, as well as information, such as lists of phone numbers, associated with those features. In some cases, customers may edit these lists on-line via a touch-tone interface. A list of all phone numbers that have originated or terminated a call with each customer is often included in the CLASS office database. For each customer, usually only the most recent number on this list is stored by the local Class-5 switch.
A Private Branch Exchange (PBX), is a stored program switch similar to a Class-5 switch. It is usually used within a medium-to-large-sized business for employee telephony service. Since a PBX is typically operated by a single private organization, there exists a wide variety of PBX services and features. Custom configurations are common, such as integration with intercom and voice mail systems. PBX's typically support their own versions of the CLASS features, as well as other features in addition to those of CLASS. Most PBX features are designed to facilitate business and group communications.
A summary of typical PBX features includes:
Call transfer: An established call may be transferred from one number to another number on the same PBX.
Call forwarding: In addition to CLASS call forwarding, a PBX number can be programmed to automatically transfer a call to another number when the first number does not answer or is busy.
Camp-on queuing: Similar to PSTN call return, a call to a busy number can be queued until the callee can accept it. The caller can hang up their phone and the PBX will ring them when the callee answers.
Conference calling: Two or more parties can be connected to one another by dialing into a conference bridge number.
Call parking: An established call at one number can be put on hold and then reestablished from another number. This is useful when call transfer is not warranted.
Executive override: A privileged individual can break into an established call. After a warning tone to the two participants, the call becomes a three-way call.
While the CLASS and PBX features have enhanced the offerings of service providers that use the PSTN, the features are nevertheless limited in their flexibility and scope. The effect to the user is that the features become clumsy and difficult to use. For example, in order to use the Call Forwarding function, the user must perform the steps at the user's own phone prior to moving to the location of the telephone to which calls will be forwarded. A more desirable approach, from the standpoint of usefulness to the user, would be to perform the steps at the telephone or other device to which calls will be forwarded.
Much of the lack of flexibility of the PSTN features is due to the inflexible nature of the PSTN system itself. One problem with the PSTN is that the terminal devices (e.g. telephones) lack intelligence and operate as “dumb” terminals on a network having the intelligence in central offices. Most PSTN telephones are limited in functional capability to converting the analog signals they receive to sound, converting the sound from the handset to analog signals, generating the appropriate dial tones when a key on the keypad is pressed, and ringing when there is an incoming call.
Some PSTN telephones have a display device and a display function to display specific information communicated from intelligent agents in the PSTN network using the PSTN signaling architecture. For example, some PSTN telephones have a display function to enable the Caller ID feature. Even such PSTN telephones are limited however by the closed PSTN signaling architecture, which prohibits access by the PSTN telephones to the network signaling protocols. A PSTN telephone having a display function is effectively limited to displaying text, again, as a “dumb” terminal.
The Internet presents a possible solution for distributing intelligence to telephony terminal devices. In Internet telephony, digitized voice is treated as data and transmitted across a digital data network between a telephone call's participants. One form of Internet telephony uses a telephony gateway/terminal where IP telephony calls are terminated on the network. PSTN telephones are connected by a subscriber line to the gateway/terminal at the local exchange, or at the nearest central office. This form of Internet telephony provides substantial cost savings for users. Because the PSTN portion used in Internet telephony calls is limited to the local lines on each end of the call, long distance calls may be made for essentially the cost of a local call. Notwithstanding the costs savings provided by this form of Internet telephony, it is not much more flexible than the PSTN with respect to providing enhancements and features to the basic telephone service.
In another form of Internet telephony, telephones are connected to access networks that access the Internet using a router. The telephones in this form of Internet telephony may be substantially more intelligent than typical PSTN telephones. For example, such a telephone may include substantially the computer resources of a typical personal computer.
Data network telephones and the data network (e.g. Internet) system in which they operate, however, lack a substantial infrastructure and service providers for providing telephone service.
Conventional communication systems, such as the PSTN, have typically assigned telephone numbers to subscribers based on the geographic locatio
Bezaitis Andrew
Dean Frederick D.
Grabiec Jacek A.
Mahler Jerry J.
Schuster Guido M.
3Com Corporation
Jung Min
McDonnell Boehnen & Hulbert & Berghoff LLP
LandOfFree
Flexible dial plan for a data network telephony system does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Flexible dial plan for a data network telephony system, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible dial plan for a data network telephony system will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-3249961