Flexible conduit with high inertia hoop

Pipes and tubular conduits – Flexible – Braided – interlaced – knitted or woven

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C138S130000, C138S131000, C138S135000, C138S144000, C428S035800, C428S036910

Reexamination Certificate

active

06415825

ABSTRACT:

The present invention relates to a flexible pipe for transporting, over long distances, a fluid which is under pressure and possibly at a high temperature, such as a gas, petroleum, water or other fluids. The invention relates most particularly to a pipe intended for offshore oil exploration. It relates especially, first, to flow lines, that is to say flexible pipes unwound from a barge in order to be laid generally on the bottom of the sea and connected to the subsea installations, such pipes working mainly in static mode, and, secondly, to risers, that is to say flexible pipes which are unwound from a surface installation such as a platform and are connected to the subsea installations and most of which do not lie below the seabed, such pipes working essentially in dynamic mode.
The flexible pipes used offshore must be able to resist high internal pressures and/or external pressures and also withstand longitudinal bending or twisting without the risk of being ruptured.
They have various configurations depending on their precise use but in general they satisfy the constructional criteria defined in particular in the standards API 17 B and API 17 J drawn up by the American Petroleum Institute under the title “Recommended Practice for Flexible Pipe”.
For pipes intended for greater depths, in which the risk of collapse of the pipe due to the external pressure is greater, a configuration known as a “rough bore” configuration is used. In general, such pipes comprise, from the inside outward:
a carcass consisting of an interlocked metal strip, which serves to prevent collapse under pressure;
an internal sealing sheath made of a plastic, generally a polymer, able to resist to a greater or lesser extent the chemical action of the fluid to be transported;
a pressure vault resistant to the external pressure, but mainly to the pressure which is developed by the fluid (internal pressure) in the sealing sheath and which results in hoop stresses in the pressure vault; the pressure vault generally comprises a winding of one or more interlocked profiled metal wires (which may or may not be self-interlockable) wound in a helix with a short pitch (that is to say with a wind angle with respect to the pipe axis of between 75° and almost 90°) around the internal sheath; these profiled wires typically have T-, U- or Z-shaped cross sections, and variants thereof, these being known as “teta” and “zeta”;
at least one ply (and generally at least two crossed plies) of tensile armor layers whose lay angle measured along the longitudinal axis of the pipe is less than 55°; and
an external protective sealing sheath made of a polymer.
When the pipe is intended to convey a fluid under high pressure, the pipe has to be reinforced by increasing the size of the profiled wire used for producing the pressure vault. However, the wire of the pressure vault is wound with non-touching turns in order to give the pipe a degree of flexibility. The expression “non-touching turns” is understood to mean turns between which a certain space or interstice, called hereinafter “gap”, is left, which gap may be greater the larger the wound profiled wire.
Due to the effect of the internal pressure and/or of the temperature developed by the fluid, the internal sealing sheath, which is relatively soft, is pressed against the internal face of the pressure vault and has a tendency to penetrate one or more inter-turn gaps. The penetration or creep tendency of the sealing sheath increases with the duration and/or the severity of the operating conditions of the flexible pipe, for example when the fluid to be conveyed flows under a high pressure (several hundred bar) and/or at a high temperature (greater than 100° C.), a high temperature generally reducing the rigidity of the internal sealing sheath. When the sealing sheath gradually penetrates the gaps, either cracks are produced, which thus affect the sealing function of the internal sheath, or even one or more local fractures of the internal sheath occur, the consequence of such incidents being an intrusion of the fluid to the outside of the internal sheath, which no longer fulfills the required sealing.
Several solutions have been proposed for limiting or trying to prevent the creep of the internal sheath into the gaps between the turns of the pressure vault, such as the choice of a thicker and/or stronger material for the sheath, but this generally results in an increase in the manufacturing cost of the pipe and often complicates its manufacture. A very advantageous solution has been proposed in document FR 2 744 511 A, which consists in winding an anti-creep tape having specific characteristics around the sealing sheath, this tape forming a sublayer lying beneath the internal face of the pressure vault, but the effectiveness of this solution encounters limitations at high pressures and for high flexible pipe diameters.
Another solution has been developed by the Applicant specifically for pipes used under extreme conditions (that is to say for great depths and/or a high internal pressure and/or large pipe diameters) and forms the subject matter of patent application FR 98/10254. According to that solution, the vault includes an elongate overlay element at least partially masking the gaps of the profiled wire facing the internal sheath. The elongate, preferably flat, overlay element is advantageously placed helically in and to the rear of the internal face of the pressure vault so as not to be projecting with respect to the annular volume of the vault; the overlay element may be especially produced by an attached wire which is inserted into the internal face of the vault or by parts of the profiled wire itself by an overlap on the internal face of the vault.
Moreover, in order to increase the resistance to the internal pressure of the pressure vault, it is known, for example from the aforementioned standard API 17J, to provide, as an accessory, what is called a hoop layer consisting of a winding of a flat rectangular wire also with a short pitch, which is superposed on the profiled wire, thus constituting the first layer of the pressure vault, this new, double winding being, of course, without any interlocking. Document EP 0 796 404 A in the name of the Applicant shows a hoop on top of a winding of interlocked “teta” wire and documents US 4 903 735 A, 5 275 209 A and US 5 730 188 A show a hoop on top of a self-interlockable “zeta” winding.
To the knowledge of the Applicant, the hoop is always a flat wire with a relatively small thickness (generally less than 7.5 mm) and always less than the thickness of the profiled wire forming the first layer of the pressure vault which principally fulfills the function of pressure resistance. Such a thickness is sufficient for the hoop to act as an accessory to the profiled wire which is given to it in the resistance to the internal pressure.
Finally, it is known that the carcass can deform, when a large load is applied to it, in two main modes, namely the cardioid mode and the more unfavorable ovalized mode. When the pipe has to be used at great depths, it is known that, to prevent the carcass from ovalizing too rapidly, it is necessary for the pressure vault to be designed accordingly.
Although such a typical strong pipe, with its interlocked carcass, its sealing sheath and its pressure vault with the interlocked profiled wire and the hoop, is satisfactory from the technical standpoint, it is relatively expensive, and this cost increases even more when they are pipes for extreme conditions: the profiled wire of complex cross section is even more expensive the larger and heavier it is, both in terms of raw materials and processing; in addition, the gaps whose size matches that of the profiled wire require measures to be taken in order to prevent the sealing sheath from creeping, such as, for example, increasing the thickness of the sheath.
The object of the invention is to propose a flexible pipe having substantially the same technical performance in terms of creep resistance, service pressure and collapse pressure, especially when it is used und

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flexible conduit with high inertia hoop does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flexible conduit with high inertia hoop, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flexible conduit with high inertia hoop will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2843083

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.