Fleet maintenance method

Data processing: generic control systems or specific application – Generic control system – apparatus or process – Digital positioning

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C700S066000, C700S073000, C701S024000, C701S123000, C702S063000, C702S187000, C290S017000

Reexamination Certificate

active

06813526

ABSTRACT:

BACKGROUND OF INVENTION
Field of Invention
This invention relates to a method of monitoring golf car usage to enhance the efficiency of golf course operations and related equipment.
SUMMARY OF INVENTION
The present invention is a method for optimizing golf car deployment. The fundamental steps include recording golf car usage record based on axle revolutions, associating a golf car identification with the usage record, communicating the usage record and associated identification to a data store; calculating total usage data for each golf car identification and reporting total usage data. Recording the golf car usage data can be achieved by implementing a magnet device to record the deviation in galvanic current upon each rotation. However, photonic, mechanical and sonic detection of the axel rotation are anticipated by the present Invention.
The golf car identification may be proprietary to the particular golf car operation or may be the manufacturer's serial number. The association of the golf car identification with the usage data is preferably achieved by a database table wherein columns and row values represent the usage and golf car identification values. Additional identifying information in the table may include battery information, age of the golf car, maintenance records, warranty data, golf course information and the like.
The usage data for the golf car may be calculated as an aggregate since the golf car was deployed, similar to an odometer. Alternatively, the axle count may be periodically reset to maintain smaller values in the buffer. Usage data is typically stored in an electronic medium during golf car operation and retrieved periodically by wired or wireless means.
In an embodiment of the invention, golf car rental income data is calculated for a predetermined time frame. Golf car usage data for the same time frame is also calculated. The income data and the usage data are then compared whereby discrepancies between actual use and rental records may be resolved. For example, if a golf car typically travels 10,000 yards in a play of 18 holes and usage data indicates the golf car actually traveled 20,000 yards, rental income should reflect sales of two (2) 18 hole rounds under the golf car.
In a preferred embodiment, the preexisting accounting program used to track income In the golf car operation is provided with a software conduit for exporting golf car rental income data to the data store. Alternatively, the software conduit may import golf car usage data from the data store to the accounting program. For example, QUICKBOOKS software manufactured by Intuit Corporation provides a standardized development kit (SDK) for software developers to import and export data from the application. The SDK includes an object-oriented software component that is called from a software process to send and receive data from the QUICKBOOKS master data file. Accordingly, sales data for the golf car operation may be exported to the data store and compared with golf car usage. In this case, a reporting application such as CRYSTAL REPORTS manufactured by Crystal Decisions, Inc. in Palo Alto, Calif. may be deployed to generate reports from the data store to compare sales data with usage data. Alternatively, usage data from the data store may be imported to the QUICKBOOKS master data file and reports may be run within the QUICKBOOKS application to compare usage data and sales data.
An operation that has a high Income to usage value suggests an efficient, profitable operation. Accordingly, an embodiment of the invention includes the steps of calculating a usage-income efficiency value based on the step of comparing rental income data with usage data. Additionally, personal responsibility for the success or failure of the operation may be borne by identifying at least one or more employees responsible for collecting golf car rental income and grouping the usage-income efficiency value with the at least one or more employees. On a larger scale, the relative profitability of a plurality of golf course operation may be determined by measuring the usage-income efficiency value of a first golf course operation against a second golf course operation.
With a group of like-equipment, i.e., similar in make, type, model and age, (a “group”) it is in the group operator's economic interest to: (1) minimize equipment downtime, (2) minimize equipment repair expense, (3) extend the group useful life, and (4) if the equipment is used for revenue production, minimize revenue loss due to equipment downtime.
In addition, it is in the OEM's economic interest to encourage its customers, the equipment operators, to balance usage of groups of the OEM's equipment and thereby to: (1) ensure operator satisfaction with the equipment by minimizing equipment downtime and (2) minimize equipment warranty claims by the operator. The present invention, using collected golf car usage data, enables the operator to accomplish all of these objectives. On a periodic basis (hourly, daily, weekly, etc.), the method tabulates for every group being monitored by the invention a table of accumulated usage data for each equipment unit in the group. With every tabulation, every unit in the group is assigned to a usage percentile. On a periodic basis, the on-board memory device on each equipment unit is updated by the invention with its usage percentile ranking (“UPR”) and this UPR is displayed on a color-coded or display type LED mounted on each equipment unit. The operator balances group rotation by using each equipment unit based on the unit's UPR: frequent and repeated usage for units with low UPRs, minimum or no usage for units with high UPRs. The invention provides the operator and the OEM with periodic text and graphic notices identifying any equipment units that are deviating from the group's usage average. Unit's UPRs are constantly re-tabulated and unit usage is continuously adjusted so that throughout the group's useful life, every unit In the group has approximately the same usage as every other unit.
An embodiment of the present invention collects golf car usage data from on-board sensor devices on a group of equipment units, passes the data by various communications means to a database store, processes the golf car usage data from the group, prepares equipment rotation reports, and transmits the reports by various communications means to the equipment operator, such reports designed to enable the operator to balance the usage of the equipment units in the group and, in turn, to minimize equipment downtime, minimize equipment repair expense, extend the group useful life, and if the equipment is used for revenue production, minimize revenue loss due to equipment downtime.
in addition to the economic benefits enumerated above which result from balanced usage of the equipment, the equipment owner realizes a higher residual value for the units upon disposal. If the equipment is leased to the operator, these benefits accrue to the OEM; if purchased, they accrue to the operator.
The method includes the steps of prioritizing the deployment of golf cars based on total usage data and communicating a priority order by a visual Indicator. The visual indicator may be one or more light emitting diodes, a liquid crystal display (LCD) or the like. Preferably, if an LCD is used, it displays the deployment priority numerically or alphabetically. In addition, the LCD provides battery capacity level. As some modern golf cars are equipped with global positioning devices, an embodiment of the invention may utilizing these preexisting displays to provide the deployment priority by alphanumeric indicator.
There are economic benefits for an operator if he is able to compare his equipment usage levels for specified time periods (days, weeks, months) with usage levels of groups of other operators (i.e., groups by type, by size, and by geographic region). Based on an operator's percentile ranking within the various groups, the operator can determine, for example, if marketing and advertising expendit

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Fleet maintenance method does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Fleet maintenance method, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Fleet maintenance method will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3303857

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.