Chemistry: molecular biology and microbiology – Measuring or testing process involving enzymes or... – Involving hydrolase
Reexamination Certificate
1998-01-08
2001-01-23
Allen, Marianne P. (Department: 1631)
Chemistry: molecular biology and microbiology
Measuring or testing process involving enzymes or...
Involving hydrolase
C435S212000, C435S219000, C435S024000, C530S324000, C530S329000, C530S350000
Reexamination Certificate
active
06177258
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to novel flea protease proteins and their use to reduce flea infestation of animals. The present invention also relates to the use of anti-flea protease antibodies and other compounds that reduce flea protease activity to reduce flea infestation of animals.
BACKGROUND OF THE INVENTION
Fleas, which belong to the insect order Siphonaptera, are obligate ectoparasites for a wide variety of animals, including birds and mammals. Flea infestation of animals is of health and economic concern because fleas are known to cause and/or transmit a variety of diseases. Fleas cause and/or carry infectious agents that cause, for example, flea allergy dermatitis, anemia, murine typhus, plague and tapeworm. In addition, fleas are a problem for animals maintained as pets because the infestation becomes a source of annoyance for the pet owner who may find his or her home generally contaminated with fleas which feed on the pets. As such, fleas are a problem not only when they are on an animal but also when they are in the general environment of the animal.
The medical and veterinary importance of flea infestation has prompted the development of reagents capable of controlling flea infestation. Commonly encountered methods to control flea infestation are generally focussed on use of insecticides in formulations such as sprays, shampoos, dusts, dips, or foams, or in pet collars. While some of these products are efficacious, most, at best, offer protection of a very limited duration. Furthermore, many of the methods are often not successful in reducing flea populations on the pet for one or more of the following reasons: (1) failure of owner compliance (frequent administration is required); (2) behavioral or physiological intolerance of the pet to the pesticide product or means of administration; and (3) the emergence of flea populations resistant to the prescribed dose of pesticide. Additional anti-flea products include nontoxic reagents such as insect growth regulators (IGRs), including methoprene, which mimics flea hormones and affect flea larval development.
An alternative method for controlling flea infestation is the use of flea vaccines to be administered to animals prior to or during flea infestation. However, despite considerable interest in developing anti-flea reagents, no flea vaccine presently exists.
SUMMARY OF THE INVENTION
The present invention relates to flea serine protease proteins, to flea aminopeptidase proteins, and to flea cysteine protease proteins; to flea serine protease, aminopeptidase and/or cysteine protease nucleic acid molecules, including those that encode such proteins; to antibodies raised against such proteins; and to compounds that inhibit flea serine protease, aminopeptidase and/or cysteine protease activities. The present invention also includes methods to obtain such proteins, nucleic acid molecules, antibodies, and inhibitors. Also included in the present invention are therapeutic compositions comprising such proteins, nucleic acid molecules, antibodies, and/or inhibitors as well as the use of such therapeutic compositions to protect a host animal from flea infestation.
One embodiment of the present invention is an isolated nucleic acid molecule that hybridizes under stringent hybridization conditions with a gene including a serine protease gene comprising a nucleic acid sequence including a nucleic acid molecule including SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:43 and/or SEQ ID NO:45, and a cysteine protease gene comprising a nucleic acid molecule selected from the group consisting of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:88, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:93 and/or SEQ ID NO:94.
The present invention also includes a nucleic acid molecule that hybridizes under stringent hybridization conditions with a nucleic acid sequence encoding a protein comprising an amino acid sequence including SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:19, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, SEQ ID NO:33, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:41, SEQ ID NO:44, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:96, SEQ ID NO:2, SEQ ID NO:5, SEQ ID NO:8, SEQ ID NO:89, SEQ ID NO:92 and/or SEQ ID NO:95, or with a nucleic acid sequence that is a complement of any of the nucleic acid sequences. A preferred nucleic acid sequence of the present invention includes a nucleic acid molecule comprising a nucleic acid sequence including SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:43 and SEQ ID NO:45, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:88, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:93 and/or SEQ ID NO:94, and allelic variants thereof.
The present invention also includes an isolated protein encoded by a nucleic acid molecule that hybridizes under stringent hybridization conditions with a nucleic acid molecule having a nucleic acid sequence encoding a protein comprising an amino acid sequence including SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:19, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, SEQ ID NO:33, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:41, SEQ ID NO:44, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:96, SEQ ID NO:2, SEQ ID NO:5, SEQ ID NO:8, SEQ ID NO:89, SEQ ID NO:92 and SEQ ID NO:95.
The present invention also relates to recombinant molecules, recombinant viruses and recombinant cells that include a nucleic acid molecule of the present invention. Also included are methods to produce such nucleic acid molecules, recombinant molecules, recombinant viruses and recombinant cells.
Yet another embodiment of the present invention is a therapeutic composition that is capable of reducing hematophagous ectoparasite infestation. Such a therapeutic composition includes an excipient and a protective compound including: an isolated protein or mimetope thereof encoded by a nucleic acid molecule that hybridizes under stringent hybridization conditions with a nucleic acid molecule having a nucleic acid sequence encoding a protein comprising an amino acid sequence including SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:19, SEQ ID NO:22, SEQ ID NO:24, SEQ ID NO:27, SEQ ID NO:30, SEQ ID NO:33, SEQ ID NO:36, SEQ ID NO:38, SEQ ID NO:41, SEQ ID NO:44, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:96, SEQ ID NO:2, SEQ ID NO:5, SEQ ID NO:8, SEQ ID NO:89, SEQ ID NO:92 and SEQ ID NO:95; an isolated nucleic acid molecule that hybridizes under stringent hybridization conditions with a gene comprising a nucleic acid sequence including SEQ ID NO:9, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:23, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:37, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:45, SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:88, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:93 and SEQ ID NO:94; an isolated antibody that selectively binds to a protein encoded by a nucleic acid molecule that hybridizes under stringent hybridization conditions with a nucleic acid molecule having a nucleic acid sequence encoding a protein comprising an amino acid sequence including SEQ ID NO:10, SEQ ID NO:13, SEQ ID NO:16, SEQ ID NO:19, SE
Gaines Patrick J.
Hunter Shirley Wu
Stiegler Gary L.
Allen Marianne P.
Heska Corporation
Sheridan & Ross P.C.
LandOfFree
Flea protease proteins and uses thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Flea protease proteins and uses thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flea protease proteins and uses thereof will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2507190