Organic compounds -- part of the class 532-570 series – Organic compounds – Carbohydrates or derivatives
Reexamination Certificate
2001-06-28
2002-10-22
Zeman, Mary K. (Department: 1631)
Organic compounds -- part of the class 532-570 series
Organic compounds
Carbohydrates or derivatives
C536S023200, C536S023500, C536S024300, C435S006120, C435S320100, C435S471000, C435S069100, C435S069300, C530S350000
Reexamination Certificate
active
06469152
ABSTRACT:
FIELD OF THE INVENTION
The present invention relates to flea allantoinase nucleic acid molecules, proteins encoded by such nucleic acid molecules, antibodies raised against such proteins, inhibitors of such proteins and methods to detect such inhibitors. The present invention also includes therapeutic compositions comprising such nucleic acid molecules, proteins, antibodies, and/or other inhibitors, as well as uses thereof.
BACKGROUND OF THE INVENTION
Flea infestation of animals is a health and economic concern because fleas arc known to cause and/or transmit a variety of diseases. Fleas directly cause a variety of diseases, including allergies, and also carry a variety of infectious agents including, but not limited to, endoparasites (e.g., nematodes, cestodes, trematodes and protozoa), bacteria and viruses. In particular, the bites of fleas are a problem for animals maintained as pets because the infestation becomes a source of annoyance not only for the pet but also for the pet owner who may find his or her home generally contaminated with insects. As such, fleas are a problem not only when they are on an animal but also when they are in the general environment of the animal.
Bites from fleas are a particular problem because they not only can lead to disease transmission but also can cause a hypersensitive response in animals which is manifested as disease. For example, bites from fleas can cause an allergic disease called flea allergic (or allergy) dermatitis (FAD). A hypersensitive response in animals typically results in localized tissue inflammation and damage, causing substantial discomfort to the animal.
The medical importance of flea infestation has prompted the development of reagents capable of controlling flea infestation. Commonly encountered methods to control flea infestation are generally focused on use of insecticides. While some of these products are efficacious, most, at best, offer protection of a very limited duration. Furthermore, many of the methods are often not successful in reducing flea populations. In particular, insecticides have been used to prevent flea infestation of animals by adding such insecticides to shampoos, powders, collars, sprays, spot-on formulations foggers and liquid bath treatments (i.e., dips). Reduction of flea infestation on the pet has been unsuccessful for one or more of the following reasons: failure of owner compliance (frequent administration is required); behavioral or physiological intolerance of the pet to the pesticide product or means of administration; and the emergence of flea populations resistant to the prescribed dose of pesticide.
Allantoinase is involved in the catalysis of the reaction converting allantoin to allantoic acid. This is a middle step in purine catabolism, which in insects results in the secretion of urea as the end product. The enzyme is located in the peroxisomes of the liver and kidney in amphibians. There is no known mammalian homologue to allantoinase, as mammals secrete uric acid, a precursor to allantoin. As such, flea allantoinase represents a novel target for anti-flea vaccines and chemotherapeutic drugs. Therefore, isolation and sequencing of flea allantoinase genes may be critical for use in identifying specific agents for treating animals for flea infestation.
SUMMARY OF THE INVENTION
The present invention relates to a novel product and process for protection of animals from flea infestation.
The present invention provides flea allantoinase proteins; nucleic acid molecules encoding flea allantoinase proteins; antibodies raised against such proteins; mimetopes of such proteins or antibodies; and compounds that inhibit flea allantoinase activity (i.e, inhibitory compounds or inhibitors).
The present invention also includes methods to obtain such proteins, mimetopes, nucleic acid molecules, antibodies and inhibitory compounds. The present invention also includes the use of proteins and antibodies to identify such inhibitory compounds as well as assay kits to identify such inhibitory compounds. Also included in the present invention are therapeutic compositions comprising proteins, mimetopes, nucleic acid molecules, antibodies and inhibitory compounds of the present invention including protective compounds derived from a protein of the present invention that inhibit the activity of allantoinase proteins; also included are uses of such therapeutic compounds to reduce flea infestation.
One embodiment of the present invention is an isolated nucleic acid molecule that hybridizes with a nucleic acid sequence having SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO:11 under conditions that allow less than or equal to about 30% base pair mismatch.
Another embodiment of the present invention is an isolated nucleic acid molecule having nucleic acid sequence that is at least about 70% identical to SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:8, SEQ ID NO:9, and SEQ ID NO:11.
The present invention also relates to recombinant molecules, recombinant viruses and recombinant cells that include a nucleic acid molecule of the present invention. Also included are methods to produce such nucleic acid molecules, recombinant molecules, recombinant viruses and recombinant cells.
Another embodiment of the present invention includes an isolated protein that is at least about 70% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:2, SEQ ID NO:7 and SEQ ID NO:10 and fragments thereof, wherein such fragments can elicit an immune response against respective flea proteins or have activity comparable to respective flea proteins.
Another embodiment of the present invention includes an isolated protein encoded by a nucleic acid molecule that hybridizes with the complement of a nucleic acid sequence having SEQ ID NO:1, SEQ ID NO:4, SEQ ID NO:6 and SEQ ID NO:9, under conditions that allow less than or equal to about 30% base pair mismatch.
DETAILED DESCRIPTION OF THE INVENTION
The present invention provides for flea allantoinase nucleic acid molecules, proteins encoded by such nucleic acid molecules, antibodies raised against such proteins, and inhibitors of such proteins. As used herein, flea allantoinase nucleic acid molecules and proteins encoded by such nucleic acid molecules are also referred to as allantoinase nucleic acid molecules and proteins. Flea allantoinase nucleic acid molecules and proteins of the present invention can be isolated from a flea or prepared recombinantly or synthetically. Flea allantoinase nucleic acid molecules of the present invention can be RNA or DNA, or modified forms thereof, and can be double-stranded or single-stranded; examples of nucleic acid molecules include, but are not limited to, complementary DNA (cDNA) molecules, genomic DNA molecules, synthetic DNA molecules, DNA molecules which are specific tags for messenger RNA, and corresponding mRNA molecules. As such, a flea nucleic acid molecule of the present invention is not intended refer to an entire chromosome within which such a nucleic acid molecule is contained, however, a flea allantoinase cDNA of the present invention may include all regions such as regulatory regions that control production of flea allantoinase proteins encoded by such a cDNA (such as, but not limited to, transcription, translation or post-translation control regions) as well as the coding region itself, and any introns or non-translated coding regions. As used herein, the phrase “flea allantoinase protein” refers to a protein encoded by a flea allantoinase nucleic acid molecule.
Flea allantoinase nucleic acid molecules of known length isolated from a flea, such as
Ctenocephalides felis
are denoted “nCfALN
190
”, for example nCfALN
2035
, wherein “#” refers to the number of nucleotides in that molecule, and flea allantoinase proteins of known length are denoted “PCfALN
#
” (for example PCfALN
483
) wherein “#” refers to the number of amino acid residues in that molecule.
The present invention also provides for flea allantoinase
Gaines Patrick J.
Wisnewski Nancy
Clow Lori A.
Heska Corporation
Heska Corporation
Zeman Mary K.
LandOfFree
Flea allantoinase nucleic acid molecules, proteins and uses... does not yet have a rating. At this time, there are no reviews or comments for this patent.
If you have personal experience with Flea allantoinase nucleic acid molecules, proteins and uses..., we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flea allantoinase nucleic acid molecules, proteins and uses... will most certainly appreciate the feedback.
Profile ID: LFUS-PAI-O-2931094