Flaw detection system using acoustic doppler effect

Measuring and testing – Vibration – By mechanical waves

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C073S643000

Reexamination Certificate

active

06324912

ABSTRACT:

FIELD OF INVENTION
This invention relates to a flaw detection system using acoustic Doppler effect for detecting flaws in a medium to be inspected wherein there is relative motion between the system and medium.
BACKGROUND OF INVENTION
Railroads provide both efficiency and economy in passenger and freight transportation. Like other transportation modes, however, they are prone to various problems. Statistics show that over the course of this century, the average carload and trainload tonnage has increased significantly. There is also an increasing concentration of traffic on fewer main line tracks. The average length of haul has also risen. Unfortunately, these trends have not been offset with a proportional increase in the amount of new rail laid. Consequently, the stress on rails and fatigue related failures may continue to increase. With the new demands, it is important to assess the rail integrity by detecting rail defects nondestructively and speedily.
Typical defects often found in railroad tracks include transverse and longitudinal defects in the rail head, web defects, base defects, surface defects as well as other miscellaneous damage such as head wear, corrosion, crushed head, burned rail, bolt hole cracks, head and web separation.
Nondestructive evaluation of rail tracks may be approached by continuous monitoring or detailed inspection. In the context of rail assessment, continuous monitoring results in global evaluation of the rail whereas detailed inspection focuses on a particular area to locate and/or characterize a defect in detail.
In continuous monitoring, some techniques for inspection of rail flaws at an intermediate speed are currently available, but the technology lacks efficient monitoring techniques at a high speed comparable to the speed of a passenger car. One of the limitations on speed is the need for the transducer to be in contact with the rail. Furthermore, existing detailed inspection techniques have limited capabilities, primarily due to poor sensor performance and the requirement of contact with the rail surface.
Currently, surface defects are detected by means of a device called a track circuit. This device uses the track as part of an electric circuit and uses the resistivity of the rail as an indication of surface discontinuities. Another approach is the use of ultrasonic probes in contact with the track surface by a rolling wheel. These techniques require contact with the sensor and the rail. Therefore, they are not quite suitable for high-speed monitoring.
Improved inspection systems are needed in many other applications, for example, in which there is relative motion between the system and medium to be inspected such as conveyors, cables, ropes and roadbeds. Presently inspection techniques tend to be slow and not so reliable because they typically use a change in the amplitude of the probe signal to identify a defect or flaw. Amplitude data is not easily repeatable or reliable.
SUMMARY OF INVENTION
It is therefore an object of this invention to provide a flaw detection system using acoustic Doppler effect for detecting flaws in a medium to be inspected.
It is a further object of this invention to provide such a flaw detection system using acoustic Doppler effect which is faster and more reliable.
It is a further object of this invention to provide such a flaw detection system using acoustic Doppler effect which is adapted for detecting flaws in a variety of moving and stationery mediums such as conveyors, cables, ropes, railroad tracks and roads.
It is a further object of this invention to provide such a flaw detection system using acoustic Doppler effect which utilizes a change in frequency not amplitude to identify a flaw.
It is a further object of this invention to provide such a flaw detection system using acoustic Doppler effect which is capable of extremely high speed operation and improves its resolution with speed.
It is a further object of this invention to provide such a flaw detection system using acoustic Doppler effect which operates in a remote or non-contact mode spaced from the medium to be inspected.
It is a further object of this invention to provide such a flaw detection system using acoustic Doppler effect which can be used to detect surface or internal flaws.
It is a further object of this invention to provide such a flaw detection system using acoustic Doppler effect in which stronger signals can be obtained in surface flaw inspection due to air coupling of acoustic signals.
It is a further object of this invention to provide such a flaw detection system using acoustic Doppler effect which enables continuous non-stop monitoring.
The invention results from the realization that a truly elegant yet extremely reliable continuous and high speed detection system for detecting a flaw in a medium such as a conveyor belt, cable, rope, railroad track or road can be effected by sensing a Doppler shift in a carrier signal caused by a flaw.
This invention features a flaw detection system using acoustic Doppler effect for detecting flaws in a medium wherein there is relative motion between the medium and system. There are transducer means, spaced from the medium to be inspected, for introducing to and sensing from the medium an acoustic signal that propagates in said medium at a predetermined frequency. There are also means, responsive to the sensed propagating acoustic signal, for detecting in the sensed acoustic signal the Doppler shifted frequency representative of a flaw in the medium.
In a preferred embodiment the transducer means may include a separate transmitter and receiver. The transducer may be an ultrasonic transducer and the acoustic signal an ultrasonic signal. The transducer may transmit an acoustic signal from propagation in the medium or the transducer may transmit optical energy for inducing the acoustic signal in the medium. The transducer may include a laser for transmitting that optical energy. The transducer may include an acoustic receiver. The transducer may include an electromagnetic acoustic transmitter and receiver for inducing an acoustic signal into the medium and sensing the Doppler shifted acoustic signal. The means for detecting may include a spectrum analyzer, or a bandpass filter and a peak detector, or an A to D converter and a digital filter for the purpose of distinguishing the Doppler effect frequency. In addition there may be a thresholding circuit identified with any one of the options for identifying a preselected label as a flaw. The medium to be inspected may be a railroad rail. The transducer may transmit to the surface of the medium and receive from the surface of the medium an acoustic signal and the flaws detected may be surface flaws. Or the transmitter may induce an acoustic signal internally in the medium and the flaws detected may be internal flaws. The transducer means may include a laser vibrometer interferometer for sensing the acoustic signal propagating in the medium.
The invention also features a flaw detection system using acoustic Doppler effect for detecting surface flaws when there is relative motion between the medium and system. There is an acoustic transducer means spaced from the medium to be inspected for transmitting an acoustic signal to and receiving the reflected acoustic signal at a predetermined frequency from the surface of the medium to be inspected. Means responsive to the reflected acoustic signal distinguish the Doppler shifted frequency in the reflected acoustic signal from the predetermined frequency of the transmitted acoustic signal representative of a surface flaw in the medium.
The invention also features a flaw detection system using acoustic Doppler effect for detecting flaws in a medium wherein there is relative motion between the medium and system. There are transducer means spaced from the medium to be inspected for inducing an acoustic signal to propagate the medium at a predetermined frequency and sensing the propagated acoustic signal in the medium. Means, responsive to the sensed propagating acoustic signal, distinguish the Doppler shifted

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flaw detection system using acoustic doppler effect does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flaw detection system using acoustic doppler effect, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flaw detection system using acoustic doppler effect will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2595125

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.