Flat discharge lamp and method for the production thereof

Electric lamp or space discharge component or device manufacturi – Process – With assembly or disassembly

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C445S024000, C445S040000, C313S495000, C313S484000

Reexamination Certificate

active

06659828

ABSTRACT:

TECHNICAL FIELD
The invention proceeds from a flat discharge lamp in accordance with the preamble of Claim 1. The invention also relates to a method in accordance with the preamble of the method claim for producing this discharge lamp.
The term “discharge lamp” in this case embraces sources of electromagnetic radiation based on gas discharges. The spectrum of the radiation can in this case comprise both the visible region and the UV (ultraviolet)/VUV (vacuum ultraviolet) region as well as the IR (infrared) region. A fluorescent layer can also be provided for the purpose of converting invisible radiation into visible radiation.
It is also a case here, in particular, of flat discharge lamps with so-called dielectrically impeded electrodes. Here, the dielectrically impeded electrodes are typically implemented in the form of thin metal strips which are arranged on the outer wall and/or inner wall of the discharge vessel. If all electrodes are arranged on the inner wall, at least some of the electrodes must be completely covered off from the interior of the discharge vessel with the aid of a dielectric layer. Discharge lamps of this type are disclosed, for example, in EP 0 363 832 (FIG. 3) and German Patent Application P 197 11 892.5 (FIGS. 3a, 3b). Flat discharge lamps—also denoted as flat radiators—have a discharge vessel which is formed from a base plate and cover plate, for example made from glass, which are interconnected via a frame.
It is possible to dispense with a frame when the base and/or cover part is not flat but formed such that a discharge vessel is already formed upon assembling only the base part and cover part. For example, the base part and/or the cover part can be shaped like a trough, for example by deep drawing. In this case, as well, for very large-area flat lamps the predominant fraction of the shaped base part and/or cover part is at least approximately flat and therefore requires one or more support points for stabilization.
Consequently, the terms base plate and cover plate are also to be understood below as structures which are actually, if appropriate, not completely but at least predominantly (approximately) flat.
The discharge vessel contains a gas filling of defined composition and filling pressure, and must therefore be evacuated before filling. Consequently, the discharge vessel must permanently withstand both underpressure specifically during the production of a lamp—and the later filling pressure, which is less than atmospheric pressure, for example between 10 kPa and 20 kPa. According to specification from glass manufacturers, this time-load withstand strength is to be set with a value of approximately 8 MPa and is yielded, as a function of the glass thickness used, from the maximum sag over a length between two supports. The latter is inversely proportional to the glass thickness used and at a specific temperature is, moreover, a function of the pressure difference between the interior of the discharge vessel and the outside.
Consequently, for a given pressure difference and temperature the time-load withstand strength can be achieved even in the case of thin glasses by shortening the length between two bearings. Use is made for this purpose of support points which are arranged over the base area of the discharge vessel adequately in terms of position and number. The mutual spacing between immediately adjacent support points is dimensioned such that the targeted length is not exceeded at any point.
PRIOR ART
The support points usually comprise a glass rod section, a glass ring, a glass tube or a glass ball whose heights, or respectively diameters correspond to the frame height. To date, the support points have been bonded to the base plate and/or cover plate by means of a suitable sintered glass. In this case, the bonding fixes only the support points, but is too thin to be able to compensate the differences in height.
Furthermore, recessed glass webs are also known. One possibility consists in processing a solid material by sandblasting such that the base plate is produced with an appropriate thickness and the glass webs are produced with the desired shape and height. In this case, as well, the cover glass and glass web are joined by bonding by means of a sintered glass.
A further possibility consists in integrating the webs by heat treatment of the glass such as, for example, deep-drawing by means of underpressure or dead weight or pressing. Here, the base plate or cover plate is heated above its softening point and shaped by means of a mould using standard methods.
SUMMARY OF THE INVENTION
It is the object of the present invention to provide a flat discharge lamp in accordance with the preamble of Claim 1 with improved support points.
This object is achieved by means of the features of Claim 1. Particularly advantageous refinements are to be found in the claims dependent thereon.
A further object consists in specifying an improved method for producing flat discharge lamps.
This object is achieved by means of the features of the method claim. Particularly advantageous refinements are to be found in the claims dependent thereon.
A precondition in the case of the considerations set forth at the beginning for stabilizing the discharge vessel by means of support points is that adequate, double-sided contact is ensured with the base plate and cover plate for all support points. Specifically, if a support point does not have two-sided contact, it fails as an effective support. Consequently, the free length in the region of this ineffective support point is doubled, viewed radially starting from the latter and in the plane of the plates. The targeted length is therefore exceeded in some circumstances and the time-load withstand strength is impermissibly reduced. It is necessary for this reason, also to take account of and even out irregularities in the base plate and cover plate over the basic area of the discharge space, as well as frame height tolerances. This gives rise to increased difficulties, particularly in the case of a rising number of support points and an increasing area.
The invention proposes support points which each comprise two components. These two components are distinguished in that they have clearly differing viscosities during joining of the vessel, that is to say at the jointing temperature. Here, one component works as a so-called “hard part” and has a very high viscosity, typically more than 10
9
dPa s, preferably 10
11
dPa s and higher at the jointing temperature. A soda-lime-silica glass is suitable, for example. The other component works as a so-called “soft part” with a low viscosity, tuned to the jointing temperature, in the region of typically 10
3
dPa s to approximately 10
5
dPa s or less, that is to say a defined and nondestructive deformation is provided precisely at the jointing temperature, possibly with a slight application of force. Sintered glass or lead glass, for example, is suitable.
In principle, virtually any shapes are initially conceivable for the “hard” part, in particular including bar sections, tube sections, tubes, balls, rings, bars and the like. In principle, virtually any shapes are likewise suitable for the “soft” part, for example rings, pieces of a cylinder, truncated cones, platelets or troughs. However, in each case the shapes of the two components are to be suitably coordinated with one another. The viscosities of such sintered glass parts are produced by tuned mixing ratios of different sintered glasses, using standard methods such as, for example, pressing, casting, extruding and subsequent sintering. The possibility exists here of producing these sintered parts immediately with the desired dimensions, or of fabricating them by machining ahead of the sintering. Moreover, the two components can also respectively be connected from the start to form a single-piece support point.
The mode of operation of a two-component support point during production of a flat discharge lamp consists in that its height before joining of the lamp deliberately exceeds the height of the frame, for example,

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flat discharge lamp and method for the production thereof does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flat discharge lamp and method for the production thereof, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flat discharge lamp and method for the production thereof will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-3117987

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.