Flash spinning polymethylpentene process and product

Plastic and nonmetallic article shaping or treating: processes – Forming continuous or indefinite length work – Shaping by extrusion

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

Reexamination Certificate

active

06270709

ABSTRACT:

FIELD OF THE INVENTION
This invention relates to flash-spinning of polymeric, plexifilamentary, film-fibril strands. More particularly, this invention relates to flash-spinning of polymethylpentene.
BACKGROUND OF THE INVENTION
U.S. Pat. No. 3,081,519 to Blades and White describes a flash-spinning process for producing plexifilamentary film-fibril strands from fiber-forming polymers. A solution of the polymer in a liquid, which is a non-solvent for the polymer at or below its normal boiling point, is extruded at a temperature above the normal boiling point of the liquid and at autogenous or higher pressure into a medium of lower temperature and substantially lower pressure. This flash-spinning causes the liquid to vaporize and thereby cool the exudate which forms a plexifilamentary film-fibril strand of the polymer. Preferred polymers typically include crystalline polyhydrocarbons such as polyethylene and polypropylene.
According to Blades and White, a suitable liquid for flash spinning (a) has a boiling point that is at least 25° C. below the melting point of the polymer; (b) is substantially unreactive with the polymer at the extrusion temperature; (c) should be a solvent for the polymer under the pressure and temperature set forth in the patent (i.e., these extrusion temperatures and pressures are respectively in the ranges of 165 to 225° C. and about 500 to 1500 psia (3447-10342 kPa); (d) should dissolve less than 1% of the polymer at or below its normal boiling point; and (e) should form a solution that will undergo rapid phase separation upon extrusion to form a polymer phase that contains insufficient solvent to plasticize the polymer.
Commercial spunbonded or flash-spun products have been made primarily from polyethylene plexifilamentary film-fibril strands and have typically been produced using trichlorofluoromethane as a spin agent; however, trichlorofluoromethane is an atmospheric ozone depletion chemical, and therefore, alternatives have been under investigation. There have been many other agents used for flash spinning polyethylene to either minimize or eliminate the potential for ozone depletion. Shin, in U.S. Pat. No. 5,032,326 discloses one alternative spin fluid, namely, methylene chloride and a co-spin agent halocarbon having a boiling point between −50° C. and 0° C. Kato et al. in U.S. Pat. No. 5,286,422 discloses an alternative, specifically, a spin fluid of bromochloromethane or 1,2-dichloroethylene and a co-spin agent of, e.g., carbon dioxide, dodecafluoropentane, etc.
As noted above, flashspun products have typically been made from polyethylene, however it is desirable to make flashspun products from other polymers, such as polymethylpentene that have the advantage of a higher melting point than polyethylene.
U.S. Pat. No. 5,250,237 to Shin mentions the use of alcohols with one to four carbons as spin agents for flash spinning polymethylpentene. Also, in a co-pending application assigned to DuPont 09/211,822 filed Dec. 15, 1998, certain azeotropic mixtures are used as spin agents for polymethylpentene. Regardless, a need exists to find additional solvents suited for polymethylpentene, yet also satisfy the need for non-flammability and zero or extremely low ozone depletion potential.
SUMMARY OF THE INVENTION
The present invention is a process for the preparation of plexifilamentary film-fibril strands of synthetic fiber-forming polyolefin which comprises flash-spinning at a pressure that is greater than the autogenous pressure of the spin fluid into a region of lower pressure, a spin fluid comprising (a) 5 to 30 wgt. % polymethylpentene, and (b) a spin agent selected from the group consisting of hydrochlorofluorocarbons; hydrocarbons; and chlorinated solvents.
This invention is also a spin fluid comprising (a) 5 to 30 wgt. % polymethylpentene and (b) a spin agent selected from the group consisting of hydrocarbons; hydrochlorofluorocarbons; and chlorinated solvents.
This invention is also directed to plexifilamentary film-fibril strands of fiber-forming polymethylpentene having a tenacity of at least 0.5 grams per denier and more preferably having a tenacity of at least 1 gram per denier. Also included are blends of polymethylpentene with polyethylene and polypropylene.
This invention is also directed to a process for the preparation of microcellular foam fibers from synthetic fiber-forming polyolefin which comprises flash-spinning at a pressure that is greater than the autogenous pressure of the spin fluid into a region of lower pressure, a spin fluid comprising (a) at least 40 wgt. % polymethylpentene and (b) a spin agent selected from the group consisting of hydrocarbons; hydrochlorofluorocarbons; and chlorinated solvents.
The invention is further directed to a process for the preparation of discrete plexifilamentary fibers (pulp) from synthetic fiber-forming polyolefins.


REFERENCES:
patent: 3081519 (1963-03-01), Blades et al.
patent: 3851023 (1974-11-01), Brethauer et al.
patent: 4608089 (1986-08-01), Gale et al.
patent: 5032326 (1991-07-01), Shin
patent: 5147586 (1992-09-01), Shin et al.
patent: 5250237 (1993-10-01), Shin
patent: 5279776 (1994-01-01), Shah
patent: 5286422 (1994-02-01), Kato et al.
patent: 5985196 (1999-11-01), Shin et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flash spinning polymethylpentene process and product does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flash spinning polymethylpentene process and product, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flash spinning polymethylpentene process and product will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2483976

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.