Flanged insulation assembly and method of making

Stock material or miscellaneous articles – Structurally defined web or sheet – Edge feature

Reexamination Certificate

Rate now

  [ 0.00 ] – not rated yet Voters 0   Comments 0

Details

C428S074000, C052S406200

Reexamination Certificate

active

06221464

ABSTRACT:

TECHNICAL FIELD AND INDUSTRIAL APPLICABILITY OF THE INVENTION
This invention relates to insulation products, and in particular those insulation products of the type suitable for insulating buildings. More specifically, this invention pertains to insulation products having flanges that can be used to install the insulation in buildings.
BACKGROUND OF THE INVENTION
Fibrous insulation is typically formed by fiberizing molten material and depositing the fibers on a collecting conveyor. Most, but not all fibrous insulation products contain a binder material to bond the fibers together, forming a lattice or network. The binder gives the insulation product resiliency for recovery after packaging, and provides stiffness and handleability so that the product can be handled and applied as needed in the insulation cavities of buildings. The fibrous insulation is cut into lengths to form insulation products, and the insulation products are packaged for shipping.
One typical insulation product is an insulation batt, usually 8 feet long, and generally suitable for use as wall insulation in residential dwellings, or as insulation in the attic and floor cavities in buildings. In many insulation applications a vapor barrier is needed on one side or face of the insulation to prevent moisture-laden air from the warm interior of the dwelling from entering the insulation. Otherwise, the water vapor in the warm interior air cools and condenses within the insulation, thereby creating a wet insulation product that can have difficulty performing at its designed efficiency. Vapor barriers are typically created with a layer of asphalt in conjunction with a kraft paper or foil facing. The vapor barrier can also be created by applying a film of moisture impervious material, such as a polyethylene film, to an entire wall containing unfaced insulation. In all cases the vapor barrier is positioned on the warm side, i.e., interior, of the insulation cavity. Also, the opposite major face of the insulation product must be vapor pervious to prevent water from being trapped within the insulation product.
In the past, insulation products have been manufactured with stapling flanges suitable for enabling the insulation installer to attach the insulation product to the studs for wall insulation or to the joists for ceiling insulation. U.S. Pat. Nos. 3,307,306 to Oliver and U.S. Pat. No. 3,729,879 to Franklin both disclose insulation products having flanges with an adhesive material to assist in attaching the insulation product to the studs. U.S. Pat. No. 5,421,133 to Berdan et al. discloses a ceiling insulation product having reinforced flanges for attachment to joists.
In a typical installation of fiberglass insulation into wall cavities, the insulation installer inserts the insulation batt into the wall cavity from the interior of the building, with the vapor barrier oriented toward or facing the installer. Typically, the insulation batt is provided with flanges to enable the installer to staple the batt to the studs. Consequently, typical wall cavity insulation has one side or major face having both a vapor barrier and attachment flanges. Where the installer is insulating the ceiling of a basement or a crawl space, the vapor barrier must be placed away from the installer. This makes it impossible to use the attachment flanges of the typical wall cavity insulation since the flanges are positioned deep within the ceiling cavity.
Recent advances in manufacturing insulation products have resulted in insulation materials that rely on encapsulation materials for containing and handling purposes, and do not require any binder material to bond the insulation fibers to each other. As disclosed in U.S. Pat. No. 5,545,279 to Hall et al. the insulation material can be encapsulated in an in-line process. The primary use for such encapsulated insulation products is attic insulation since this type of insulation product is difficult to install in wall cavities or in underfloor ceiling cavities. Although attachment flanges could be added to the encapsulated insulation batts, this would not be economically practical.
It would be advantageous if there could be developed an insulation product or insulation assembly that could have attachment flanges created in an inexpensive manner. Further, it would be beneficial if there could be developed an insulation product that could be universally applied to either a wall cavity or a ceiling cavity.
SUMMARY OF THE INVENTION
The above objects as well as other objects not specifically enumerated are achieved by an insulation assembly including an elongated batt of fibrous insulation material having two opposed major surfaces, where the batt has a first facing secured on its first major surface. The first facing extends beyond the side edges of the batt to form opposed flanges suitable for attaching the insulation assembly to a building structure. The batt has a second facing secured on its second major surface, with the second facing extending beyond the side edges of the batt to form opposed flanges suitable for attaching the insulation assembly to a building structure.
In a specific embodiment of the invention, the insulation assembly includes an elongated batt of fibrous insulation material having two opposed major surfaces and longitudinal corners at the intersection of the major surfaces and the sides of the batt. The batt has an encapsulation material on a major surface and encapsulation material on the sides of the batt. A flange is positioned at a corner of the batt. The flange is formed from a bonded two part fold of the encapsulation material, and the flange is suitable for attaching the insulation assembly to a building structure.
In another embodiment of the invention, the method of making an insulation assembly includes moving a pack of fibrous insulation material along a path, where the fibrous insulation material has two opposed major surfaces. A continuous encapsulation material is applied to the pack, and a portion of the encapsulation material is continuously gathered to form a two part fold. The two parts of the fold are bonded together to form a flange suitable for attaching the insulation assembly to a building structure.
In another embodiment of the invention, the method of making an insulation assembly includes moving a pack of fibrous insulation material along a path, where the fibrous insulation material has two opposed major surfaces. A continuous encapsulation material is applied to the pack, and a portion of the encapsulation material is continuously gathered and drawn through pinch rolls to continuously form a shaped corner in the encapsulation material.
In yet another embodiment of the invention, the method of making an insulation assembly includes processing a continuous encapsulation material to form two continuous flanges suitable for being attached to a building structure. A pack of fibrous insulation material is moved along a path, where the fibrous insulation material has two opposed major surfaces. The continuous encapsulation material is applied to the pack to form an encapsulated insulation assembly, wherein one of the major surfaces has the two flanges in an opposed relationship so that the insulation assembly can be attached to the building structure by attaching the flanges to the building structure.


REFERENCES:
patent: 2028253 (1936-01-01), Spafford
patent: 2576698 (1951-11-01), Russum
patent: 3307306 (1967-03-01), Oliver
patent: 3729879 (1973-05-01), Franklin
patent: 4161567 (1979-07-01), Sturgeon
patent: 4172915 (1979-10-01), Sheptak et al.
patent: 4189089 (1980-02-01), Langen et al.
patent: 4189986 (1980-02-01), Silver
patent: 4249982 (1981-02-01), Ausnit
patent: 4294640 (1981-10-01), Martinelli et al.
patent: 4590727 (1986-05-01), Ghahremani et al.
patent: 4839126 (1989-06-01), Griesdorn
patent: 5362539 (1994-11-01), Hall et al.
patent: 5421133 (1995-06-01), Berdan, II et al.
patent: 5486401 (1996-01-01), Grant et al.
patent: 5545279 (1996-08-01), Hall et al.
patent: 5733624 (1998-03-01), Syme et al.
patent: 5746854 (1998-05-01), Romes et al.

LandOfFree

Say what you really think

Search LandOfFree.com for the USA inventors and patents. Rate them and share your experience with other people.

Rating

Flanged insulation assembly and method of making does not yet have a rating. At this time, there are no reviews or comments for this patent.

If you have personal experience with Flanged insulation assembly and method of making, we encourage you to share that experience with our LandOfFree.com community. Your opinion is very important and Flanged insulation assembly and method of making will most certainly appreciate the feedback.

Rate now

     

Profile ID: LFUS-PAI-O-2439004

  Search
All data on this website is collected from public sources. Our data reflects the most accurate information available at the time of publication.